THE HODGE GROUP OF AN ABELIAN VARIETY

V. KUMAR MURTY

(Communicated by William C. Waterhouse)

ABSTRACT. Let A be a simple abelian variety of odd dimension, defined over \mathbb{C}. If the Hodge classes on A are intersections of divisors, then the semisimple part of the Hodge group of A is as large as it is allowed to be by endomorphisms and polarizations.

1. Introduction. Let A be an abelian variety defined over \mathbb{C}, and denote by $\mathcal{H}(A)$ its Hodge ring:

$$\mathcal{H}(A) = \bigoplus_p (H^{2p}(A(\mathbb{C}), \mathbb{Q}) \cap H^{pp}).$$

Denote by $\mathcal{D}(A)$ the subring of $\mathcal{H}(A)$ generated by the elements of $H^{2}(A(\mathbb{C}), \mathbb{Q}) \cap H^{11}$. We denote by $\text{Hod}(A)$ the Hodge group of A introduced by Mumford [3]. It is a connected, reductive algebraic subgroup of $GL(V)$, where $V = H_1(A(\mathbb{C}), \mathbb{Q})$. It acts on the cohomology of A and its main property is that

$$H^*(A(\mathbb{C}), \mathbb{Q})^{\text{Hod}(A)} = \mathcal{H}(A).$$

We shall also consider a group $L(A)$ which was studied by Ribet [8] and the author [6]. To define it, we fix a polarization ψ of A. Then, $L(A)$ is the connected component of the identity of the centralizer of $\text{End}(A) \otimes \mathbb{Q}$ in $Sp(V, \psi)$. The definition is independent of the choice of polarization. It is known that $\text{Hod}(A) \subseteq L(A)$ and in [6], it was proved that if A has no simple factor of type III (see §2 for the definitions), then

$$\text{Hod}(A) = L(A) \Leftrightarrow \mathcal{H}(A^k) = \mathcal{D}(A^k) \text{ for all } k \geq 1.$$

Moreover, if A has a factor of type III, then $\mathcal{H}(A) \neq \mathcal{D}(A)$.

Let G be a connected reductive algebraic group defined over \mathbb{Q}, and denote by \mathcal{G} its Lie algebra. It is known that there is a unique connected semisimple algebraic subgroup G_{ss} of G whose Lie algebra is the maximal semisimple subalgebra of \mathcal{G}. We refer to G_{ss} as 'the semisimple part' of G.

The purpose of this note is to show that in some cases, the assumption $\mathcal{H}(A) = \mathcal{D}(A)$ is already sufficient to imply that the semisimple parts of $\text{Hod}(A)$ and $L(A)$ are equal. We prove two general results of which the following is a consequence.
PROPOSITION. Let A be simple and of odd dimension. Then, $\mathcal{H}(A) = \mathcal{D}(A)$ implies that $\text{Hod}(A)_{\text{ss}} = L(A)_{\text{ss}}$.

A key element in the proof is the classification (cf. Serre [10]) of the simple factors of $\text{Hod}(A)$ and the explicit determination of $L(A)$ [6].

REMARKS. 1. By a classical result of Lefschetz, $\mathcal{D}(A)$ consists of Poincaré duals of algebraic cycles on A. Thus, the condition $\mathcal{H}(A) = \mathcal{D}(A)$ implies that the Hodge conjecture holds for A. (In fact, it holds in the strong sense that any algebraic cycle on A is algebraically equivalent to an intersection of divisors.)

2. The proof will show that the condition $\mathcal{H}(A) = \mathcal{D}(A)$ can be replaced by the weaker condition that every Hodge cycle on A of codimension ≤ 3 is contained in $\mathcal{D}(A)$.

3. If we are in a case where $L(A)$ is known to be semisimple, the Proposition shows that $\mathcal{H}(A) = \mathcal{D}(A)$ implies that $\mathcal{H}(A_k) = \mathcal{D}(A_k)$ for all $k \geq 1$. This is because the conditions on A preclude it from being of type III and so (*) can be applied.

4. If A is simple and of CM type, both $\text{Hod}(A)$ and $L(A)$ are tori, and so the Proposition above gives no information. However, Lenstra and Ribet (unpublished) have shown in this case that if $\mathcal{H}(A) = \mathcal{D}(A)$ and $\text{End}(A) \otimes \mathbb{Q}$ is a field which is abelian over \mathbb{Q}, then $\text{Hod}(A) = L(A)$. It is an interesting problem to study how small $\text{Hod}(A)$ can be, relative to $L(A)$, when A is of CM type. Liem Mai [12] has recently obtained lower bounds for the dimension of $\text{Hod}(A)$, in some cases, and Dodson [1] has shown that this dimension must satisfy some congruence conditions.

5. Tanke'ev has shown that if A is simple and of prime dimension, $\text{Hod}(A) = L(A)$ and $\mathcal{H}(A_k) = \mathcal{D}(A_k)$ for all $k \geq 1$. The proof has been simplified by Ribet [8] who also showed that the conclusion is valid for a slightly larger class of abelian varieties.

I am grateful to Kenneth Ribet for helpful comments on an earlier version of this note.

2. Lemmas. Fix an algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} and an embedding $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$. Let ρ denote complex conjugation. We write

$$\Delta(A) = \text{End}(A) \otimes_{\mathbb{Z}} \mathbb{Q}$$

and let E be a maximal commutative semisimple subalgebra of $\Delta(A)$. Thus, E is a product of fields $E = E_1 \times \cdots \times E_r$ and by the classification of Albert (cf. Mumford [4, §21]) each factor is either a CM field or a totally real field. We say that A is of type III if $\Delta(A)$ is a totally definite quaternion division algebra over a totally real field, and A is of type IV if $\Delta(A)$ is a division algebra over a CM field.

We have a decomposition $V \otimes \mathbb{C} = \prod V_{\sigma}$ indexed by the set Σ of homomorphisms $\sigma: E \otimes \mathbb{C} \rightarrow \mathbb{C}$, where

$$V_{\sigma} = (V \otimes \mathbb{C}) \otimes_{E \otimes \mathbb{C}, \sigma} \mathbb{C}.$$

Let $H = \text{Hod}(A)/\mathbb{C}$ and $L = L(A)/\mathbb{C}$. Each V_{σ} is an L module and hence, also an H module. Denote by L_{σ} the projection of L to $GL(V_{\sigma})$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
THE HODGE GROUP OF AN ABELIAN VARIETY

LEMMA 1. Each V_σ is a simple H module, and the following are equivalent:
(i) $V_\sigma_1 \sim V_\sigma_2$ as H modules,
(ii) $V_\sigma_1 \sim V_\sigma_2$ as L modules.

PROOF. It follows easily from the definitions that
\[\text{End}_{H(A)}(V) = \text{End}_{L(A)} V = \Delta(A). \]
As E is a maximal commutative semisimple subalgebra, we have
\[\text{End}_{H(A)}, E V = E. \]
Complexifying, we see that for any $\sigma \in \Sigma$, we have
\[\text{End}_H V_\sigma = C. \]
This proves the first assertion. To see the equivalence of (i) and (ii), note that for any $a_1, a_2 \in E$, we have $\text{Hom}_L(V_{a_1}, V_{a_2}) \leftrightarrow \text{Hom}_H(V_{a_1}, V_{a_2})$. Now
\[\prod \text{Hom}_H(V_{a_1}, V_{a_2}) = \prod \text{Hom}_L(V_{a_1}, V_{a_2}) \]
as both sides are equal to $\Delta(A) \otimes C$. (The product on both sides is over all pairs $a_1, a_2 \in \Sigma$.) The result follows. \qed

Denote by E_i^+ the maximal totally real subfield of E_i ($1 \leq i \leq r$) and set $E^+ = E_1^+ \times \cdots \times E_r^+$. For each homomorphism $\lambda : E^+ \otimes R \to R$, set
\[X_\lambda = (V \otimes R) \otimes_{E^+ \otimes R} R. \]
Since $L(A)$ commutes with E, it acts on X_λ. We write L_λ for the projection $L(A) \to GL(X_\lambda)$.

Suppose that every simple factor of A is of type IV. Then, for every λ, X_λ has a natural complex structure and the polarization induces a Hermitian form ω_λ on X_λ. Denote by $U(X_\lambda, \omega_\lambda)$ the unitary group with respect to ω_λ.

LEMMA 2. If every simple factor of A is of type IV, then for every λ, $L_\lambda = U(X_\lambda, \omega_\lambda)$.

PROOF. This follows from Lemma 2.1 and Lemma 2.3 of [6]. \qed

We know that
\[H \subset L \subset \prod GL(V_\sigma). \]
Let $S = H_{ss}$ and $R = L_{ss}$. Let H_σ denote the projection of H to $GL(V_\sigma)$, and S_σ the projection of S to $SL(V_\sigma)$.

LEMMA 3. If V_σ is of odd dimension (over C), then every simple component of S_σ is of type A. Moreover, if $V_\sigma = V_{1,\sigma} \otimes V_{2,\sigma} \otimes \cdots \otimes V_{m,\sigma}$ is a decomposition of V_σ induced by the decomposition of S_σ into simple components, each $V_{i,\sigma}$ is an exterior power of the standard representation (i.e. a fundamental representation).

This is [10, Corollary to Proposition 8].

LEMMA 4. Let S_i ($1 \leq i \leq r$) be complex simple Lie groups of type $A_{m(i)}$, $m(i) \geq 3$ for all i. Let Y_1, \ldots, Y_r be fundamental representations of S_1, \ldots, S_r (respectively). Let
\[S = S_1 \times S_2 \times \cdots \times S_r \quad \text{and} \quad Y = Y_1 \otimes Y_2 \otimes \cdots \otimes Y_r. \]
If the \(S \) modules \(\wedge^2 Y \) and \(\wedge^3 Y \) are irreducible, then \(r = 1 \) and \(Y \) is the standard representation of \(S \) or its dual.

PROOF. For each \(i \),
\[
\text{Sym}^2(Y_i) \otimes \cdots \otimes \text{Sym}^2(Y_{i-1}) \otimes \wedge^2 Y_i \otimes \text{Sym}^2(Y_{i+1}) \otimes \cdots \otimes \text{Sym}^2(Y_r)
\]
is an \(S \) submodule of \(\wedge^2 Y \). Thus, \(\wedge^2 Y \) is reducible unless \(r = 1 \). Now, let \(W \) denote the standard representation of \(S \) and set \(w = \dim W \). Suppose that \(Y = \wedge^2 W \). We may assume that \(j \leq w/2 \) by replacing \(Y \) with its dual if necessary. In the notation of Jacobson [2, Chapters 4 and 8], the highest weight of the exterior square of \(Y \) is \(\alpha_j + \alpha_{j+1} \). By the Weyl dimension formula, we must then have
\[
\left(\begin{array}{c} w \\ 2 \end{array} \right) = \dim \wedge^2 Y = \frac{3(w+1)}{(j+1)(w-j+2)} \left(\begin{array}{c} w \\ j \end{array} \right) \left(\begin{array}{c} w \\ j+1 \end{array} \right).
\]
Easy estimates show that this is possible only if \(j \leq 2 \). If \(j = 2 \), the highest weight of the exterior cube of \(Y \) is \(2\alpha_1 + \alpha_4 \) and again, by the dimension formula, we must have
\[
\left(\begin{array}{c} w \\ 3 \end{array} \right) = \dim \wedge^3 Y = \frac{1}{3}(w+1)(w+2) \left(\begin{array}{c} w \\ 4 \end{array} \right)
\]
which forces \(w \leq 2 \). Thus, we must have \(j = 1 \) and the lemma is proved.

LEMMA 5. Let \(W_1, W_2 \) be two finite dimensional complex vector spaces. Let \(\mathcal{S}_1, \mathcal{S}_2 \) be simple complex Lie subalgebras of \(\mathfrak{gl}(W_1), \mathfrak{gl}(W_2) \) (respectively) of type \(A, B \) or \(C \). Let \(\mathcal{S} \) be a Lie subalgebra of \(\mathcal{S}_1 \times \mathcal{S}_2 \) whose projection to each factor is surjective. Then, either \(\mathcal{S} = \mathcal{S}_1 \times \mathcal{S}_2 \) or \(\mathcal{S} \) is the graph of an isomorphism of \(\mathcal{S}_1 \approx \mathcal{S}_2 \) induced by an isomorphism \(W_2 \approx W_1 \) or \(W_1 \approx W_2 \) of \(\mathcal{S} \)-modules.

PROOF. For \(i = 1, 2 \), let \(\pi_i : \mathcal{S} \to \mathcal{S}_i \) denote the \(i \)th projection and set \(\mathcal{N}_i = \ker \pi_{3-i} \). We may view \(\mathcal{N}_i \) as an ideal of \(\mathcal{S}_i \) and hence, \(\mathcal{N}_i = 0 \). By Goursat's Lemma (see Ribet [7, §5]), it follows that \(\mathcal{S} = \mathcal{S}_1 \times \mathcal{S}_2 \) or \(\mathcal{S} \) is the graph of an isomorphism \(\mathcal{S}_1 \approx \mathcal{S}_2 \). In the latter case, it follows that \(\mathcal{S}_1, \mathcal{S}_2 \) are both of the same type. If they are of type \(B \) or \(C \), it follows that \(W_1 \approx W_2 \) as \(\mathcal{S} \)-modules, since every automorphism of such algebras is inner [2, p. 281]. If they are of type \(A \), then \(W_1 \approx W_2 \) or \(W_2 \approx W_1 \) as \(\mathcal{S} \)-modules, since, modulo inner automorphisms, the only automorphism of such an algebra is \(g \mapsto -g \).

LEMMA 6. Let \(I \) be a finite set and for each \(\sigma \in I \), let \(\mathcal{S}_\sigma \) be a finite dimensional complex simple Lie algebra. Let \(\mathcal{A}, \mathcal{B} \) be two algebras such that
(a) \(\mathcal{A} \subseteq \mathcal{B} \).
(b) \(\mathcal{B} \) is a subalgebra of \(\prod \mathcal{S}_\sigma \) and the projection to each \(\mathcal{S}_\sigma \) is surjective.
(c) \(\mathcal{A}, \mathcal{B} \) have equal images on \(\mathcal{S}_\sigma \times \mathcal{S}_\tau \) for all pairs \((\sigma, \tau) \in I \times I, \sigma \neq \tau \).
Then, \(\mathcal{A} = \mathcal{B} = \prod \mathcal{S}_\sigma \) where the \(\sigma \) range over a certain subset of \(I \).

This is [9, Lemma 4.6].

3. Main results. We retain the notation of the previous section. Thus, \(A \) is an abelian variety, \(V = H_1(A(C), \mathbb{Q}) \) and \(E \) is a maximal commutative semisimple subalgebra of \(\Delta(A) \).
THEOREM 1. Suppose that E is a product of CM fields and that V is free over E of odd rank m. Suppose that $\mathcal{H}(A) = \mathcal{D}(A)$. Then $\text{Hod}(A)_{ss} = L(A)_{ss}$.

PROOF. First, we check that every simple factor of A is of type IV. We have $E = E_1 \times \cdots \times E_r$, with E_i a CM field. There is a corresponding decomposition up to isogeny $A \sim A_1 \times \cdots \times A_r$. As E_i is a field, A_i is a power of a simple abelian variety, say $A_i = B_i^{n(i)}$. To show that B_i is of type IV, it suffices to show that $\text{End}(B_i) \otimes \mathbb{Q}$ is not a quaternion division algebra D_i over a totally real field F_i. Suppose that it is and let $x_i = \dim_D H_1(B_i(C), \mathbb{Q})$. As E_i is a maximal commutative subfield of $A(A_i) = \mathbb{M}_n(i)(D_i)$,

$$\dim V_i = \frac{n(i)x_i[D_i : \mathbb{Q}]}{2n(i)[F_i : \mathbb{Q}]} = 2x_i.$$

This contradicts our assumption that m is odd. Thus, every simple factor of A is of type IV.

Now, for each homomorphism $\lambda : E^+ \otimes \mathbb{R} \rightarrow \mathbb{R}$, we have

$$X_\lambda \otimes \mathbb{C} = V_\sigma \oplus V_{\rho \sigma}$$

where σ is an extension of λ to a map $E \otimes \mathbb{C} \rightarrow \mathbb{C}$. Lemma 2 implies that as L modules,

(1) $$V_{\rho \sigma} \simeq \tilde{V}_\sigma.$$

Moreover, Lemma 1 implies that the V_σ are all simple as H modules. Let R_σ denote the image of R in $SL(V_\sigma)$. By Lemma 2, $R_\sigma = SL(V_\sigma)$. As $\dim_{\mathbb{C}}(V_\sigma) = m$ is odd, $m = 1$ or $m \geq 3$. In the first case, $S_\sigma = R_\sigma = 1$. We may thus suppose that $m \geq 3$. By Lemma 3, there is an isogeny $S_\sigma \sim S_1,\sigma \times \cdots \times S_r,\sigma$ with each S_i,σ a simple group of type A. In the corresponding decomposition $V_\sigma = V_{1,\sigma} \otimes \cdots \otimes V_{r,\sigma}$, each V_i,σ is a fundamental representation of S_i,σ.

By [6, Lemmas 2.1, 3.4 and 3.6] and our assumption that $\mathcal{H}(A) = \mathcal{D}(A)$, we see that

$$H^*(A(C), \mathbb{Q})_{\text{Hod}(A)} = \mathcal{H}(A) = \mathcal{D}(A) = H^*(A(C), \mathbb{Q})_{L(A)}.$$

Thus, for any sequence $\{i(\sigma)\}_\sigma$ of positive integers,

(*) $$\text{the } H \text{ and } L \text{ invariants of } \bigotimes_\sigma \bigwedge^i V_\sigma \text{ must agree.}$$

In particular, utilising (1), we see that for any σ, and any integer i with $1 \leq i \leq m$, we must have

(2) $$\dim \text{End}_{H_\sigma} \left(\bigwedge^i V_\sigma \right) = \dim \text{End}_{L_\sigma} \left(\bigwedge^i V_\sigma \right) = 1.$$

Since $H_\sigma \subseteq L_\sigma = GL(V_\sigma)$, the center Z_σ of H_σ consists at most of scalars. Thus (2) is equivalent to

(3) $$\text{End}_{S_\sigma} \left(\bigwedge^i V_\sigma \right) = \mathbb{C}$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
for all σ. In particular, $\wedge^2 V_\sigma$ and $\wedge^3 V_\sigma$ are irreducible as S_σ modules. Since $S_\sigma \subseteq R_\sigma$ and R_σ acts on V_σ by the standard representation, Lemma 4 implies that
$$S_\sigma = SL(V_\sigma) = R_\sigma.$$ In particular, the Lie algebra \mathcal{L}_σ of S_σ is $\mathcal{L}L(V_\sigma)$. Now, for $\sigma, \tau \in \Sigma, \sigma \neq \tau$, let $S_{\sigma, \tau}$ (respectively, $R_{\sigma, \tau}$) denote the image of S (respectively, R) in $SL(V_\sigma) \times SL(V_\tau)$. Let $\mathcal{L}_{\sigma, \tau}$ (respectively, $\mathcal{R}_{\sigma, \tau}$) denote the Lie algebra of $S_{\sigma, \tau}$ (respectively, $R_{\sigma, \tau}$). Goursat’s Lemma implies that
$$\mathcal{L}_{\sigma, \tau} = \mathcal{L}L(V_\sigma) \times \mathcal{L}L(V_\tau)$$ or $\mathcal{L}_{\sigma, \tau}$ is the graph of an isomorphism
$$\mathcal{R}_{\sigma, \tau} \simeq \mathcal{L}L(V_\tau).$$ If (4) occurs, then we see that
$$\mathcal{S}_{\sigma, \tau} = \mathcal{S}S(V_\sigma) \times \mathcal{S}S(V_\tau)$$ also, since $\mathcal{S}_{\sigma, \tau} \subseteq \mathcal{R}_{\sigma, \tau}$.

Now suppose (5) occurs. Lemma 5 and (1) imply that
$$V_\sigma \simeq V_\tau \text{ or } V_{\rho \sigma}$$ as S modules. If $\tau = \rho \sigma$, then it is clear that $\mathcal{R}_{\sigma, \tau}$ is also the graph of the isomorphism (5). We may therefore suppose that τ is different from $\rho \sigma$. Consider the H submodule of $H_4(A(C), \mathbb{C})$ given by
$$W = V_\sigma \otimes V_{\rho \sigma} \otimes V_\tau \otimes V_{\rho \tau}.$$ From (6), it follows that as S modules,
$$W \simeq V_\sigma \otimes V_\sigma \otimes V_{\rho \sigma} \otimes V_{\rho \sigma} \simeq \text{End}(V_\sigma \otimes V_\sigma)$$
$$\simeq \text{End} \left(\wedge^2 V_\sigma \oplus \text{Sym}^2 V_\sigma \right).$$ The latter contains a two dimensional subspace
$$W_{\sigma, \tau} = \text{End}_S \left(\wedge^2 V_\sigma \right) \oplus \text{End}_S \left(\text{Sym}^2 V_\sigma \right)$$ on which S acts trivially. The center of H acts trivially on W, and hence also on $W_{\sigma, \tau}$. It follows that H acts trivially on $W_{\sigma, \tau}$. By our assumption (**), L also acts trivially on this space. It follows that (6) holds as L modules also, for otherwise, the subspace of W on which L acts trivially is only one dimensional. Hence, we deduce that $\mathcal{R}_{\sigma, \tau}$ is the graph of an isomorphism $\mathcal{L}L(V_\sigma) \simeq \mathcal{L}L(V_\tau)$ and in particular, $\mathcal{R}_{\sigma, \tau} = \mathcal{S}_{\sigma, \tau}$.

Now, appealing to Lemma 6, we conclude that
$$\mathcal{S} = \mathcal{R} = \prod \mathcal{S}U(X_\lambda)$$ where λ ranges over a certain subset of the homomorphisms $E^+ \otimes \mathbb{R} \rightarrow \mathbb{R}$. Since S and R are connected, and $S \subseteq R$, it follows that $S = R$. This proves the Theorem.

Remark. In fact, it can be shown that $H_\sigma = GL(V_\sigma)$ and that the dimension of the center of H is at least 2. Hence, if $\dim \mathbb{Q} E \leq 4$, then $\text{Hod}(A) = L(A)$.

The next theorem is a slight generalization of a result of Tanke'ev [11] who proved it in the case $\Delta(A) = E$. The case $m = 1$ is a special case of [5, Theorem 4.1].
THEOREM 2. Suppose that E is a product of totally real fields and that V is free over E of rank $2m$, m odd. Then $\text{Hod}(A) = L(A)$. In particular, $\mathcal{H}(A^k) = \mathcal{D}(A^k)$ for all $k \geq 1$.

PROOF. As before, for each homomorphism $\sigma: E \otimes \mathbb{C} \to \mathbb{C}$, we have the H module V_σ which is a $2m$ dimensional \mathbb{C} vector space. Write $H_\sigma \sim H_{1,\sigma} \times \cdots \times H_{r,\sigma}$ where each $H_{i,\sigma}$ is a simple group. Write $V_\sigma = V_{1,\sigma} \otimes \cdots \otimes V_{r,\sigma}$ for the corresponding decomposition of V_σ. By Lemma 1, each V_σ is a simple H_σ module. As E is a product of totally real fields, the polarization ψ induces an alternating form ψ_σ on V_σ and $H_\sigma \subseteq L_\sigma \subseteq \text{Sp}(V_\sigma, \psi_\sigma)$. (Here, L_σ is the projection of L to $\text{GL}(V_\sigma)$.) Hence, each $V_{i,\sigma}$ is either a symplectic or orthogonal representation of $H_{i,\sigma}$. Since a symplectic representation has even dimension, exactly one of the $V_{i,\sigma}$ is symplectic and the others must be orthogonal. From [10, Proposition 7 and the Appendix], we see that when m is odd, there are the following possibilities:

(i) $H_{i,\sigma}$ is of type A_n ($n \geq 1$) and $V_{i,\sigma}$ is an exterior power of the standard representation. Here, $\dim V_{i,\sigma} = \binom{n+1}{k}$ for some $k \leq n$.

(ii) $H_{i,\sigma}$ is of type C_n ($n \geq 2$) and $V_{i,\sigma}$ is the standard representation. Here, $\dim V_{i,\sigma} = 2n$ and $V_{i,\sigma}$ is symplectic.

(iii) $H_{i,\sigma}$ is of type D_n ($n \geq 4$) and $V_{i,\sigma}$ is the standard representation. Here, $\dim V_{i,\sigma} = 2n$ and $V_{i,\sigma}$ is orthogonal.

Suppose $H_{i,\sigma}$ is of type A_n. For $V_{i,\sigma}$ to be symplectic or orthogonal, we must have n odd, say $n + 1 = 2n_0$, and $k = n_0$. Moreover, $V_{i,\sigma}$ is symplectic when n_0 is odd and orthogonal when n_0 is even. Now,

$$
\dim V_{i,\sigma} = \binom{n+1}{k} = \binom{2n_0}{n_0}
$$

is always even and is divisible by 4 if n_0 is odd. Thus, m odd implies that $V_{i,\sigma}$ cannot be symplectic. But in this case, some other $V_{j,\sigma}$ is symplectic and this would give $4 \mid 2m$ and so, case (i) cannot occur. But, as $\dim V_{i,\sigma}$ is even in both the remaining cases, we must have $r = 1$ and H_σ of type C_n, i.e. $H_\sigma = \text{Sp}(V_\sigma, \psi_\sigma) = L_\sigma$. Again, by taking Lie algebras and appealing to Lemmas 1, 5 and 6, it follows that

$$
H = L = \prod \text{Sp}(V_\sigma, \psi_\sigma).
$$

Finally, we check that no simple factor of A is of type III by a dimension calculation as in the proof of Theorem 1. Now by [6, Theorem 3.1] (stated as (**) in the Introduction), it follows that $\mathcal{H}(A^k) = \mathcal{D}(A^k)$ for all $k \geq 1$. This proves the theorem.

Finally, we combine the two theorems to prove the result stated in the Introduction.

PROOF OF THE PROPOSITION. As A is simple, any maximal commutative semisimple subalgebra of $\Delta(A)$ must in fact be a field E, (say). Moreover, E is totally real or a CM field. In the first case, E acts on $\text{Lie}(A)$ and so $[E : \mathbb{Q}]$ divides $\dim A$. Thus, $\dim_E V = 2m$, m odd. The Proposition follows in this case from Theorem 2. In the second case, $[E : \mathbb{Q}]$ is even and so $\dim_E V = m$ is odd. The Proposition follows in this case from Theorem 1.
REFERENCES

10. J.-P. Serre, Groupes algébriques associés aux modules de Hodge-Tate, Astérisque 65 (1979), 155–188.

DEPARTMENT OF MATHEMATICS, CONCORDIA UNIVERSITY, MONTREAL, CANADA

Current address: Department of Mathematics, University of Toronto, Toronto, Canada M5S 1A1