Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Hodge group of an abelian variety


Author: V. Kumar Murty
Journal: Proc. Amer. Math. Soc. 104 (1988), 61-68
MSC: Primary 14K20; Secondary 11G10, 11G15, 14C30
DOI: https://doi.org/10.1090/S0002-9939-1988-0958044-1
MathSciNet review: 958044
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be a simple abelian variety of odd dimension, defined over $ {\mathbf{C}}$. If the Hodge classes on $ A$ are intersections of divisors, then the semisimple part of the Hodge group of $ A$ is as large as it is allowed to be by endomorphisms and polarizations.


References [Enhancements On Off] (What's this?)

  • [1] B. Dodson, On the Mumford-Tate group of an abelian variety with complex multiplication, J. Algebra 111 (1987), 49-73. MR 913197 (89e:11034)
  • [2] N. Jacobson, Lie algebras, Interscience, 1962. MR 0143793 (26:1345)
  • [3] D. Mumford, Families of abelian varieties, Algebraic Groups and Discontinuous Subgroups (A. Borel and G. Mostow, eds.), Proc. Sympos. Pure Math., vol. 9, Amer. Math. Soc., Providence, R. I., 1966, pp. 347-351. MR 0206003 (34:5828)
  • [4] -, Abelian varieties, Tata Institute Lecture Notes, Oxford, 1974.
  • [5] V. Kumar Murty, Algebraic cycles on abelian varieties, Duke Math. J. 50 (1983), 487-504. MR 705036 (85b:14029)
  • [6] -, Exceptional Hodge classes on certain abelian varieties, Math. Ann. 268 (1984), 197-206. MR 744607 (85m:14063)
  • [7] K. Ribet, Galois action on division points of abelian varieties with real multiplication, Amer. J. Math. 98 (1976), 751-804. MR 0457455 (56:15660)
  • [8] -, Hodge classes on certain types of abelian varieties, Amer. J. Math. 105 (1983), 523-538. MR 701568 (85a:14030)
  • [9] -, Twists of modular forms and endomorphisms of abelian varieties, Math. Ann. 253 (1980), 43-62. MR 594532 (82e:10043)
  • [10] J.-P. Serre, Groupes algébriques associés aux modules de Hodge-Tate, Astérisque 65 (1979), 155-188. MR 563476 (81j:14027)
  • [11] S. G. Tanke'ev, On algebraic cycles on surfaces and abelian varieties, Math. USSR Izv. 18 (1982), 349-380. MR 616226 (83f:14019)
  • [12] Liem Mai, Lower bounds for the rank of a CM type, M.Sc. thesis, Concordia University, 1987.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14K20, 11G10, 11G15, 14C30

Retrieve articles in all journals with MSC: 14K20, 11G10, 11G15, 14C30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0958044-1
Keywords: Abelian variety, Hodge group, endomorphism algebra
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society