Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Fréchet differentiable points in Bochner function spaces $ L\sb p(\mu,X)$


Authors: Jian Hua Wang and Chao Xun Nan
Journal: Proc. Amer. Math. Soc. 104 (1988), 76-78
MSC: Primary 46E40; Secondary 46B20, 46E30
MathSciNet review: 958046
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, a characterization of Fréchet differentiable points of $ {L_p}(\mu ,X),1 < p < \infty $, is given: $ f \in {L_p}(\mu ,X),f \ne 0$ is a point of Fréchet differentiability of the norm if and only if the values $ f(t)$ are such almost everywhere in the support of $ f$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E40, 46B20, 46E30

Retrieve articles in all journals with MSC: 46E40, 46B20, 46E30


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1988-0958046-5
PII: S 0002-9939(1988)0958046-5
Keywords: Fréchet differentiable point, strongly exposed point, Bochner function space
Article copyright: © Copyright 1988 American Mathematical Society