Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A range theorem for the Radon transform

Authors: W. R. Madych and D. C. Solmon
Journal: Proc. Amer. Math. Soc. 104 (1988), 79-85
MSC: Primary 44A15; Secondary 26B40
MathSciNet review: 958047
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Conditions are prescribed for a function $ g$ which are sufficient to ensure that it is the Radon transform of a continuous function $ f$ on $ {{\mathbf{R}}^n}$ such that $ f(x) = O({\left\vert x \right\vert^{ - n - k - 1}})$ as $ \left\vert x \right\vert \to \infty $. Roughly speaking, these criteria involve smoothness and the classical polynomial consistency conditions up to order $ k$ on $ g$. In particular, the result implies Helgason's Schwartz theorem for the Radon transform [Acta Math. 113 (1965)].

References [Enhancements On Off] (What's this?)

  • [1] A. P. Calderón and A. Zygmund, Singular integral operators and differential equations, Amer. J. Math. 79 (1957), 901-921. MR 0100768 (20:7196)
  • [2] F. Gonzalez, Radon transforms on Grassmann manifolds, Ph.D. Thesis, M.I.T., Cambridge, Mass., 1984.
  • [3] S. Helgason, The Radon transform on Euclidean spaces, compact two point homogeneous spaces and Grassmann manifolds, Acta Math. 113 (1965), 153-180. MR 0172311 (30:2530)
  • [4] -, The Radon transform, Birkhäuser, Boston, Mass., 1980.
  • [5] A. Hertle, Habilitationsschrift, Univ. Mainz (to appear).
  • [6] P. D. Lax and R. S. Phillips, The Paley-Wiener theorem for the Radon transform, Comm. Pure Appl. Math. 23 (1970), 409-424. MR 0273309 (42:8189)
  • [7] W. R. Madych, On Littlewood-Paley functions, Studia Math. 50 (1974), 43-63. MR 0344797 (49:9536)
  • [8] J. Peters, A Tauberian theorem for the Radon transform, Houston J. Math. 8 (1982), 565-574. MR 688256 (84g:40003)
  • [9] K. T. Smith, D. C. Solmon and S. L. Wagner, Practical and mathematical aspects of the problem of reconstructing objects from radiographs, Bull. Amer. Math. Soc. 83 (1977), 1227-1270. MR 0490032 (58:9394a)
  • [10] D. C. Solmon, Asymptotic formulas for the dual Radon transform and applications, Math. Z. 195 (1987), 321-343. MR 895305 (88i:44006)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 44A15, 26B40

Retrieve articles in all journals with MSC: 44A15, 26B40

Additional Information

Keywords: Radon transform, polynomial consistency condition, asymptotic behavior
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society