Uniformly persistent semidynamical systems

Author:
Alessandro Fonda

Journal:
Proc. Amer. Math. Soc. **104** (1988), 111-116

MSC:
Primary 34C35; Secondary 54H20, 58F25, 92A15

DOI:
https://doi.org/10.1090/S0002-9939-1988-0958053-2

MathSciNet review:
958053

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A necessary and sufficient condition is given for a semidynamical system to be uniformly persistent. As a consequence some known results are improved.

**[1]**E. Amann and J. Hofbauer,*Permanence in Lotka-Volterra and replicator equations*, Proc. Conf. Wartburg, G.D.R., Akademie-Verlag, Berlin, 1985, pp. 23-34. MR**822250****[2]**N. P. Bhatia and O. Hajek,*Local semi-dynamical systems*, Springer-Verlag, Berlin-Heidelberg-New York, 1969. MR**0251328 (40:4559)****[3]**G. J. Butler, H. I. Freedman and P. Waltman,*Uniformly persistent systems*, Proc. Amer. Math. Soc.**96**(1986), 425-430. MR**822433 (87d:58119)****[4]**G. J. Butler and P. Waltman,*Persistence in dynamical systems*, J. Differential Equations**63**(1986), 255-263. MR**848269 (87k:54058)****[5]**M. L. Fernandes and F. Zanolin,*Remarks on strongly flow-invariant sets*, J. Math. Anal. Appl. (to appear). MR**915976 (89b:34122)****[6]**-,*Repelling conditions for boundary sets using Liapunov-like functions*(in preparation).**[7]**H. I. Freedman and W. H. So,*Global stability and persistence of simple food chain*, Math. Biosci.**76**(1985), 69-86. MR**809991 (87g:92040)****[8]**H. I. Freedman and P. Waltman,*Persistence in models of three interacting predator-prey populations*, Math. Biosci.**68**(1984), 213-231. MR**738903 (85h:92037)****[9]**J. Hofbauer,*A general cooperation theorem for hypercycles*, Monatsh. Math.**91**(1981), 233-240. MR**619966 (82j:34026)****[10]**J. Hofbauer, P. Schuster and K. Sigmund,*Competition and cooperation in catalitic selfreplication*, J. Math. Biol.**11**(1981), 155-168. MR**617130 (82h:92062)****[11]**J. Hofbauer and K. Sigmund,*Permanence for replicator equations*, Proc. Math. Dynamic Processes, Lecture Notes in Math., Springer-Verlag (to appear). MR**1120043****[12]**V. Hutson,*A theorem on average Liapunov functions*, Monatsh. Math.**98**(1984), 267-273. MR**776353 (86c:34086)****[13]**V. Hutson and W. Moran,*Persistence of species obeying difference equations*, J. Math. Biol.**15**(1982), 203-231. MR**684934 (84e:92030)****[14]**V. Hutson and G. T. Vickers,*A criterion for permanent coexistence of species, with application to a two-prey one-predator system*, Math. Biosci.**63**(1983), 253-269. MR**695730 (84i:92077)****[15]**V. Hutson and R. Law,*Permanent coexistence in general models of three interacting species*, J. Math. Biol.**21**(1985), 285-298. MR**804152 (87b:92026)****[16]**G. Kirlinger,*Permanence in Lotka-Volterra equations: linked prey-predator systems*, Math. Biosci.**81**(1986), 1-27. MR**871637 (88a:92043)****[17]**J. P. La Salle,*The stability of dynamical systems*, CBMS Regional Conf. Ser. in Appl. Math., SIAM, Philadelphia, 1976.**[18]**P. Schuster, K. Sigmund and R. Wolff,*Dynamical systems under constant organization*. III:*Cooperative and competitive behavior of hypercycles*, J. Differential Equations**32**(1979), 357-368. MR**535168 (82b:34035b)****[19]**K. Sigmund and P. Schuster,*Permanence and uninvadability for deterministic population models*, Springer Series in Synergetics, Vol. 21, Springer-Verlag, Berlin and New York, 1984, pp. 173-184. MR**771702 (85m:92013)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34C35,
54H20,
58F25,
92A15

Retrieve articles in all journals with MSC: 34C35, 54H20, 58F25, 92A15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0958053-2

Article copyright:
© Copyright 1988
American Mathematical Society