Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A factorization theorem for unfoldings of analytic functions

Author: Tatsuo Suwa
Journal: Proc. Amer. Math. Soc. 104 (1988), 131-134
MSC: Primary 58H15; Secondary 32G07
MathSciNet review: 958056
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \tilde f$ and $ g$ be holomorphic function germs at 0 in $ {{\mathbf{C}}^n} \times {{\mathbf{C}}^n} = \left\{ {\left( {x,s} \right)} \right\}$. If $ {d_x}g\Lambda {d_x}\tilde f = 0$ and if $ f\left( x \right) = \tilde f\left( {x,0} \right)$ is not a power or a unit, then there exists a germ $ \lambda $ at 0 in $ {{\mathbf{C}}^n} \times {{\mathbf{C}}^n}$ such that $ g\left( {x,s} \right) = \lambda \left( {\tilde f\left( {x,s} \right),s} \right)$. The result has the implication that the notion of an RL-morphism in the unfolding theory of foliation germs generalizes that of a right-left morphism in the function germ case.

References [Enhancements On Off] (What's this?)

  • [1] J.-F. Mattei and R. Moussu, Holonomie et intégrales premières, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 4, 469–523 (French). MR 608290
  • [2] Robert Moussu, Sur l’existence d’intégrales premières pour un germe de forme de Pfaff, Ann. Inst. Fourier (Grenoble) 26 (1976), no. 2, xi, 171–220 (French, with English summary). MR 0415657
  • [3] Robert Moussu and Jean-Claude Tougeron, Fonctions composées analytiques et différentiables, C. R. Acad. Sci. Paris Sér. A-B 282 (1976), no. 21, Aii, A1237–A1240. MR 0409876
  • [4] Tatsuo Suwa, A theorem of versality for unfoldings of complex analytic foliation singularities, Invent. Math. 65 (1981/82), no. 1, 29–48. MR 636878,
  • [5] Tatsuo Suwa, Determinacy of analytic foliation germs, Foliations (Tokyo, 1983) Adv. Stud. Pure Math., vol. 5, North-Holland, Amsterdam, 1985, pp. 427–460. MR 877343
  • [6] Tatsuo Suwa, The versality theorem for 𝑅𝐿-morphisms of foliation unfoldings, Complex analytic singularities, Adv. Stud. Pure Math., vol. 8, North-Holland, Amsterdam, 1987, pp. 599–631. MR 894309
  • [7] Gordon Wassermann, Stability of unfoldings, Lecture Notes in Mathematics, Vol. 393, Springer-Verlag, Berlin-New York, 1974. MR 0410789

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58H15, 32G07

Retrieve articles in all journals with MSC: 58H15, 32G07

Additional Information

Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society