AN ATOMIC DECOMPOSITION FOR PARABOLIC H^p SPACES ON PRODUCT DOMAINS

SHUICHI SATO

(Communicated by Richard R. Goldberg)

ABSTRACT. We obtain an atomic decomposition for two-parameter parabolic H^p spaces, showing simultaneously an integral inequality between Lusin functions and nontangential maximal functions. As its consequence, we generalize Fefferman's weak type estimates for double singular integrals.

1. Introduction. Gundy and Stein [6] proved that H^p spaces on the bidisc are characterized in terms of Lusin functions. Under a certain restriction, this was extended to parabolic H^p spaces by [7]. In the present note we consider parabolic H^p spaces on $\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$ again and extend R. Fefferman's atomic decomposition (see [4]) to this setting, which enables us to remove the restriction mentioned above and brings the Lusin function characterization of two-parameter parabolic H^p spaces. (See Theorems 1 and 2.) As a consequence, C. Fefferman's weak type estimates for double singular integrals are further generalized (see [3, 7] and Theorem 3).

2. Preliminaries. Here are some of our notations and background materials.

(2.1) If $x \in \mathbb{R}^n = \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$ ($n = n_1 + n_2$), we write $x = (x^{(1)}, x^{(2)})$, $x^{(i)} = (x^{(i)}_1, x^{(i)}_2, \ldots, x^{(i)}_{n_i}) \in \mathbb{R}^{n_i}$ ($i = 1, 2$). Let $D_i = \mathbb{R}^{n_i+1} = \{(x^{(i)}_t) \in \mathbb{R}^{n_i+1} : t > 0\}$ and $D = D_1 \times D_2$. If $X = (x^{(1)}, t_1; x^{(2)}, t_2) \in D$, we also write $X = (x, t)$, where $x = (x^{(1)}, x^{(2)})$, $t = (t_1, t_2)$.

(2.2) We consider a linear transformation P_i of \mathbb{R}^{n_i} such that $(P_i x^{(i)}, x^{(i)}) > (x^{(i)}, x^{(i)})$ for all $x^{(i)}$, where (\cdot, \cdot) denotes the ordinary inner product. Let $A_i(t) = \exp(P_i(\log t_i))$ ($t_i > 0$). For $x^{(i)} \neq 0$, $\rho^{(i)}(x^{(i)})$ denotes the unique t_i such that $|A_i^{-1} x^{(i)}| = 1$, where $|\cdot| = (\cdot, \cdot)^{1/2}$. Let $\rho^{(i)}(0) = 0$. (See Calderón and Torchinsky [1].)

(2.3) Let $B^{(i)}$ be a subset of \mathbb{R}^{n_i} such that $B^{(i)} = \{y^{(i)} : \rho^{(i)}(x^{(i)} - y^{(i)}) < t_i\}$ for some $x^{(i)} \in \mathbb{R}^{n_i}$ and $t_i > 0$. Then we say that $B^{(i)}$ is a ball centered at $x^{(i)}$ with radius t_i and write $B^{(i)} = B^{(i)}(x^{(i)}, t_i)$. We define $B^{(i)}_* = B^{(i)}(x^{(i)}, t_i) = B^{(i)}(x^{(i)}_1, 5t_i)$, $B^{(i)}_+ = B^{(i)}(x^{(i)}, t_i) = B^{(i)}(x^{(i)}_1, 20t_i)$ and if $R = B^{(1)} \times B^{(2)}$, we set $R_* = B^{(1)}_* \times B^{(2)}_*$, $R_+ = B^{(1)}_+ \times B^{(2)}_+$. We also write $R = R(x, t)$, $R_* = R_*(x, t)$, $R_+ = R_+(x, t)$.

3. Atomic decomposition. Let $\psi^{(i)} \in \mathcal{S}(\mathbb{R}^{n_i})$ (the Schwartz class) be such that

\begin{equation}
\text{supp} \psi^{(i)} \subset B^{(i)}(0, 1);
\end{equation}

Received by the editors August 19, 1987.

(3.2) \[\int_0^\infty \{ \mathcal{F} \psi^{(i)}(A_{(i)}^{(i)} \xi^{(i)}) \}^2 \frac{dt_i}{t_i} = 1 \] if \(\xi^{(i)} \neq 0 \),

where \(\mathcal{F} \psi^{(i)} \) is the Fourier transform of \(\psi^{(i)} \) and \(A_{(i)}^{(i)} \) is the transposed transformation of \(A_{(i)}^{(i)} \);

(3.3) for every monomial \(x^{(i)\alpha_i} \) of degree \(|\alpha_i| \leq N_i - 1 \),

\[\int \psi^{(i)}(x^{(i)})x^{(i)\alpha_i} dx^{(i)} = 0, \]

where \(N_i (\geq 1) \) will be determined later.

Let \(f \) be a tempered distribution on \(\mathbb{R}^n \). Then the Lusin function for \(f \) is defined by

\[S(f) = \left(\int_{\Gamma(x)} |f * \varphi_t(y)|^2 t_1^{-\gamma_1} t_2^{-\gamma_2} dy \frac{dt}{t_1 t_2} \right)^{1/2}, \]

where

\[\Gamma(x) = \{(y, t) \in D: \rho^{(i)}(x^{(i)} - y^{(i)}) < t_i \ (i = 1, 2)\} \]

and

\[\psi_t(y) = \psi_{t_1}^{(1)}(y^{(1)}) \psi_{t_2}^{(2)}(y^{(2)}) \]

with the usual notation: \(\psi_{t_i}^{(i)}(y^{(i)}) = t_i^{-\gamma_i} \psi^{(i)}(A_{(i)}^{(i)-1} y^{(i)}) \), \(\gamma_i = \text{trace } P_i \). Let \(\varphi^{(i)} \in \mathcal{P} (\mathbb{R}^{n_i}) \) be such that \(\text{supp } \varphi^{(i)} \subset B^{(i)}(0,1) \), \(\int \varphi^{(i)} dx^{(i)} = 1 \). Set \(\varphi_t(x) = \varphi_{t_1}^{(1)}(x^{(1)}) \varphi_{t_2}^{(2)}(x^{(2)}) \) and define the radial maximal function \(f^+ \) by \(f^+(x) = \sup_t |f * \varphi_t(x)| \). Then it is known that if \(f^+ \in L^p \ (0 < p < \infty) \), then \(S(f) \in L^p \) and \(\|S(f)\|_p \leq c\|f^+\|_p \) (see [7]).

In this section we prove that if \(f \in L^2 \) (this is assumed for simplicity) and \(S(f) \in L^p \ (0 < p \leq 1) \), then \(f \) can be decomposed into atoms, showing at the same time the inequality: \(\|f^+\|_p \leq c\|S(f)\|_p \). Here an atom is a function \(a \) vanishing outside an open set \(U \) of finite measure and satisfying

\[|a * \varphi_t(x)| \leq \left(\frac{|R_+(x,t) \cap U|}{|R(x,t)|} \right)^\alpha M(x) \] for all \(x \) and \(t \),

where \(\alpha > (2-p)/2p \) and \(M \) is a function such that

\[\|M\|_2 \leq |U|^{1/2-1/p} \]

(for \(R(x,t), R_+(x,t) \) see (2.3)).

Theorem 1. Suppose that \(f \in L^2 \) and \(S(f) \in L^p \ (0 < p \leq 1) \). Then there are a sequence of numbers \(\{\lambda_j\}_{j=1}^\infty \) and a sequence of atoms \(\{a_j\}_{j=1}^\infty \) such that

(a) \(f = \sum_{j=1}^\infty \lambda_j a_j \) (the series converges in \(\mathcal{S}' \));

(b) \(\sum_{j=1}^\infty |\lambda_j|^p \leq c\|S(f)\|_p^p \), where \(c \) is independent of \(f \).

As a consequence we have

Theorem 2. Let \(f \) be a tempered distribution on \(\mathbb{R}^n \) such that

\[\mathcal{F} f(\xi)(1 + |\xi|^2)^{-t} \in L^2(\mathbb{R}^n) \]
for some \(l \geq 0 \). Then
\[
\| f^+ \|_p \leq c \| S(f) \|_p \quad (0 < p \leq 1).
\]

For the case when \(P_t \) is diagonal, see [7].

Now we prove Theorem 1. We first require some preliminaries. Following [5], let \(\{ B^{(i)}(x_j^{(i)}, 2^{-1}): j = 1, 2, \ldots \} \) be a maximal family of mutually disjoint balls. Let \(B_{k,j}^{(i)} = B^{(i)}(A_{2k} x_j^{(i)}, 2^k) \) for an integer \(k \) and set \(\mathcal{B}(i, k) = \{ B_{k,j}^{(i)}: j = 1, 2, \ldots \} \), \(\mathcal{B}(i) = \bigcup_{k=-\infty}^{\infty} \mathcal{B}(i, k) \). Then we can easily see (3.4) REMARK. Similar results to those of [5, Lemma 7.14] hold for \(\mathcal{B}(i) \).

This remark enables us to proceed as in [5, Chapter 7]. For \(B^{(i)} \in \mathcal{B}(i, k) \), let \(\xi^{(i)}_{B^{(i)}} = \chi_{B^{(i)}} / \sum_{C^{(i)} \in \mathcal{B}(i, k)} \chi_{C^{(i)}} \) and \(I_{B^{(i)}}^{(i)} = \{ t_i \in \mathbb{R}: 2^{k+1} < t_i \leq 2^{k+2} \} \). Set \(\mathcal{F} = \{ B^{(1)} \times B^{(2)}: B^{(i)} \in \mathcal{B}(i) \ (i = 1, 2) \} \). For \(R = B^{(1)} \times B^{(2)} \in \mathcal{F} \), let \(\zeta_R(x) = \xi_{B^{(1)}}(x_1) \xi_{B^{(2)}}(x_2) \), \(I_R = I_{B^{(1)}}^{(1)} \times I_{B^{(2)}}^{(2)} \), \(D(R) = R \times I_R \) and set
\[
b_R(x) = \int_{D(R)} \zeta_R(y) f^*(y) \psi_t(x-y) \, dy \, \frac{dt}{t_1 t_2},
\]
\[
S_R = \left(\int_{D(R)} |f^* \psi_t(y)|^2 \, dy \, \frac{dt}{t_1 t_2} \right)^{1/2}.
\]

Next for an integer \(k \), let \(O_k = \{ x \in \mathbb{R}^n: S(f)(x) > 1 \} \), \(\mathcal{R}(k) = \{ R \in \mathcal{F}: |R \cap O_k| \geq |R|/2, |R \cap O_{k+1}| < |R|/2 \} \). Then as in [2 and 5], we have
\[
(3.5) \quad \sum_{R \in \mathcal{R}} b_R = f \quad \text{in \(\mathcal{F} \)},
\]
\[
(3.6) \quad \sum_{R \in \mathcal{R}(k)} S_R^2 \leq c 2^{2k} |O_k|
\]
\[
(3.7) \quad \text{if \(\mathcal{R}' \) is a subset of \(\mathcal{R} \), then}
\]
\[
\left\| \sum_{R \in \mathcal{R}'} b_R \right\|_2^2 \leq c \sum_{R \in \mathcal{R}'} S_R^2.
\]

Let \(a_k = \sum_{R \in \mathcal{R}(k)} b_R \), \(U_k = \{ x \in \mathbb{R}^n: M_S(\chi_{O_k})(x) \geq 100^{-N_1-N_2} \} \}. \) Here \(M_S \) is the strong maximal operator defined by \(M_S(f)(x) = \sup_{x \in R} |R|^{-1} \int_R |f(y)| \, dy \), where \(R = B^{(1)} \times B^{(2)} \) and \(B^{(i)} \) is a ball in \(\mathbb{R}^n \). Suppose that \(N_1 \) and \(N_2 \) in (3.3) are large enough to satisfy \(\delta = \delta(N_1, N_2) = \min\{N_1/\gamma_1, N_2/\gamma_2\} - 1 > (2-p)/2p \). Then, as in [4], to prove Theorem 1 it is sufficient to show
\[
(3.8) \quad |a_k \ast \varphi_t(x)| \leq \left(\frac{|R_+(x, t) \cap U_k|}{|R(x, t)|} \right)^{\delta} L(x),
\]
where \(L \) is a function such that \(\|L\|_2^2 \leq c 2^{2k} |O_k| \).

To prove (3.8), fix \(k, x, t \) and let \(\mathcal{R}' = \{ R \in \mathcal{R}(k): R \cap S \) is not empty \} \), where \(S = R(x, t) \). Then since \(\sup b_R \subset R_+ \), we have \(a_k \ast \varphi_t(x) = \sum_{R \in \mathcal{R}'} b_R \ast \varphi_t(x) \).
If $R = B^{(1)}(y^{(1)}, s_1) \times B^{(2)}(y^{(2)}, s_2)$, then we define $l_1(R) = s_1$, $l_2(R) = s_2$. With this notation we classify \mathcal{R}^* as follows:

- $\mathcal{L}(1) = \{R \in \mathcal{R}^*: l_1(R) < l_1(S), l_2(R) < l_2(S)\}$,
- $\mathcal{L}(2) = \{R \in \mathcal{R}^*: l_1(R) < l_1(S), l_2(R) \geq l_2(S)\}$,
- $\mathcal{L}(3) = \{R \in \mathcal{R}^*: l_1(R) \geq l_1(S), l_2(R) < l_2(S)\}$,
- $\mathcal{L}(4) = \{R \in \mathcal{R}^*: l_1(R) \geq l_1(S), l_2(R) \geq l_2(S)\}$.

For $j = 1, 2, 3, 4$, let $A_j = \sum_{R \in \mathcal{L}(j)} b_R$ (if $\mathcal{L}(j)$ is empty, let $A_j = 0$. This rule is in effect throughout this note). We estimate $A_j * \varphi_t(x)$ separately and prove a similar estimate to (3.8) for each A_j.

First we estimate $A_1 * \varphi_t(x)$. It is sufficient to prove

\[
|A_1 * \varphi_t(x)| \leq c \left(\frac{|S_+ \cap U_k|}{|S|} \right)^{\frac{1}{2}} \sum_{R \in \mathcal{R}(k)} M_S(b_R)(x)^{\frac{1}{2}}.
\]

since by (3.6) and (3.7) we have

\[
\int \sum_{R \in \mathcal{R}(k)} M_S(b_R)^2 \, dx \leq c \sum_{R \in \mathcal{R}(k)} |b_R|^2 \, dx \leq c \sum_{R \in \mathcal{R}(k)} S_R^2 \leq c 2^{2k}|O_k|.
\]

Let $R \in \mathcal{L}(1)$. We estimate $b_R * \varphi_t(x)$. Recall that supp $b_R \subset R_*$. Therefore, since $\psi^{(t)}$ has vanishing moments up to the order $N_t - 1$, using Taylor's formula and noting $R_* \subset S_+$, we easily find

\[
|b_R * \varphi_t(x)| \leq c \left(\frac{l_1(R)}{t_1} \right)^{N_t} \left(\frac{l_2(R)}{t_2} \right)^{N_t} |S|^{-1} \int_{S_+} |b_R| \, dy.
\]

Next, since $R \subset S_+$, it follows that $|S_+ \cap U_k| \geq |R|/2$. Combining these inequalities, we have

\[
|b_R * \varphi_t(x)| \leq c (|S_+ \cap U_k|/|S|)^{\delta} |R| |S|^{-1} M_S(b_R)(x).
\]

Thus

\[
|A_1 * \varphi_t(x)| \leq c \sum_{R \in \mathcal{L}(1)} \left(\frac{|S_+ \cap U_k|}{|S|} \right)^{\delta} |R| |S|^{-1} M_S(b_R)(x).
\]

Let $\mathcal{R}(S) = \{R \in \mathcal{R}: R \subset S_+\}$. Then, note that (3.4) implies

\[
\sum_{R \in \mathcal{L}(1)} \left(\frac{|R|}{|S|} \right)^2 \leq \sum_{R \in \mathcal{R}(S)} \left(\frac{|R|}{|S|} \right)^2 \leq c,
\]

where c is independent of x and t. Thus, applying the Schwarz inequality to the right hand side of (3.10), we obtain (3.9).

Next we estimate $A_2 * \varphi_t(x)$. For an integer m let $\mathcal{M}(m) = \{R \in \mathcal{L}(2): l_1(R) = 2^m\}$ and $A_{2,m} = \sum_{R \in \mathcal{M}(m)} b_R$. Then $A_2 = \sum_{m=-\infty}^{\infty} A_{2,m}$ (recall that $A_{2,m} = 0$ if
\(\mathcal{M}(m) \) is empty. Let
\[\mathcal{E}(m) = \{B^{(1)} \in \mathcal{B}(1): B^{(1)} \times B^{(2)} \in \mathcal{M}(m) \text{ for some } B^{(2)} \in \mathcal{B}(2)\}, \]
\[\mathcal{D}(m, B^{(1)}) = \{R \in \mathcal{M}(m): R = B^{(1)} \times B^{(2)} \text{ for some } B^{(2)} \in \mathcal{B}(2)\}, \]
\[\mathcal{Z}(B^{(1)}) = \{R \in \mathcal{B}(k): R = B^{(1)} \times B^{(2)} \text{ for some } B^{(2)} \in \mathcal{B}(2)\} \quad (B^{(1)} \in \mathcal{B}(1)), \]
\[\mathcal{E}(B^{(1)}) = \mathcal{D}(B^{(1)}) \cap \mathcal{Z}(1). \]

Then
\[
A_{2, m} \ast \varphi_{t}(x) = \sum_{B^{(1)} \in \mathcal{E}(m)} \int \varphi_{t}(x - y) \sum_{R \in \mathcal{D}(m, B^{(1)})} b_{R}(y) \, dy \]
\[- \sum_{B^{(1)} \in \mathcal{E}(m)} \int \varphi_{t}(x - y) \sum_{R \in \mathcal{E}(B^{(1)})} b_{R}(y) \, dy \]
\[= H_{m} - I_{m}, \quad \text{say.} \]

As in the estimate for \(A_{1} \ast \varphi_{t}(x) \), we have
\[
(3.11) \quad \left| \sum_{m = -\infty}^{\infty} I_{m} \right| \leq c \left(\frac{|S_{+} \cap U_{k}|}{|S|} \right)^{\delta} \left\{ \sum_{R \in \mathcal{B}(k)} M_{S}(b_{R})(x)^{2} \right\}^{1/2}.
\]

It remains to estimate \(\sum_{m} H_{m} \). Let
\[G_{B^{(1)}}(y) = \sum_{R \in \mathcal{D}(B^{(1)})} b_{R}(y) \quad (B^{(1)} \in \mathcal{B}(1)). \]

Then, for \(B^{(1)} \in \mathcal{E}(m) \), consider the integral:
\[J = \int \varphi_{t}(x^{(1)} - y^{(1)}, x^{(2)} - y^{(2)}) G_{B^{(1)}}(y^{(1)}, y^{(2)}) \, dy^{(1)}. \]

If we fix \(y^{(2)} \) and regard \(G_{B^{(1)}} \) as a function of \(y^{(1)} \), then \(G_{B^{(1)}} \) has vanishing moments up to the order \(N_{1} - 1 \) and is supported in \(B^{(1)}_{+} \). By Taylor's formula, this implies that
\[
(3.12) \quad |J| \leq c t_{1}^{-N_{1}} t_{2}^{-N_{1}} \left(\frac{2m}{t_{1}} \right)^{N_{1}} \int_{B^{(1)}_{+}} |G_{B^{(1)}}(y^{(1)}, y^{(2)})| \, dy^{(1)}. \]

Note that if \(B^{(1)} \in \mathcal{E}(m) \), then \(B^{(1)}_{+} \subset B^{(1)}(x^{(1)}, 20t_{1}) \). Thus, integrating \(J \) with respect to \(y^{(2)} \) and using (3.12), we find
\[
\left| \int \varphi_{t}(x - y) G_{B^{(1)}}(y) \, dy \right| \leq c \left(\frac{2m}{t_{1}} \right)^{N_{1}} |S|^{-1} \int_{S_{+}} |G_{B^{(1)}}(y)| \, dy.
\]

Consequently
\[
(3.13) \quad |H_{m}| \leq c \left(\frac{2m}{t_{1}} \right)^{N_{1}} |S|^{-1} \int_{S_{+}} \sum_{B^{(1)} \in \mathcal{E}(m)} |G_{B^{(1)}}(y)| \, dy.
\]
Let $F_m(y) = \sum_{B^{(1)} \in \mathscr{B}(1,m)} |G_{B^{(1)}}(y)|^2$. Since by Remark (3.4) we have

$$\sum_{B^{(1)} \in \mathscr{B}(1,m)} \chi_{B^{(1)}} \leq c$$

(where c is independent of m), from the Schwarz inequality it follows that

$$\sum_{B^{(1)} \in \mathscr{B}(m)} |G_{B^{(1)}}| \leq cF_m^{1/2}.$$

Therefore, by (3.13) we have

$$|H_m| \leq c(2^m/t_1)^{N_1} M_S(F_m^{1/2}),$$

so that

$$\left| \sum_m H_m \right| \leq c \sum_m \left(\frac{2^m}{t_1} \right)^{N_1} M_S(F_m^{1/2}),$$

where the summation with respect to m is taken over all integers m such that $\mathscr{M}(m)$ is not empty. Note that if $\mathscr{M}(m)$ is not empty,

$$(2^m/t_1)^{1/2} \leq c|S_+ \cap U_k|/|S|.$$

Thus, applying the Schwarz inequality to the right-hand side of (3.14), we have

$$\left(\sum_m H_m \right)^{1/2} \leq c \left(\frac{|S_+ \cap U_k|}{|S|} \right)^{N_1/2} \left\{ \sum_{m=-\infty}^{\infty} M_S(F_m^{1/2})^2 \right\}^{1/2}.$$

On the other hand, by (3.6) and (3.7)

$$\int \sum_{m=-\infty}^{\infty} M_S(F_m^{1/2})^2 \, dx \leq c \sum_{m=-\infty}^{\infty} \int F_m \, dx \leq c \sum_{m=-\infty}^{\infty} \sum_{B^{(1)} \in \mathscr{B}(1,m)} R_{(B^{(1)})}^2$$

$$\leq c2^{2k}|O_k|.$$

Therefore, combining (3.15) with (3.11), we obtain a desired estimate. $A_3 \ast \varphi_\delta(x)$ can be treated similarly.

Finally we estimate $A_4 \ast \varphi_\delta(x)$. Note that if $\mathscr{L}(4)$ is not empty, then $U_k \supset S_+$. Thus

$$|A_4 \ast \varphi_\delta(x)| \leq \sum_{j=1}^{3} |A_j \ast \varphi_\delta(x)| + cM_S(a_k)(x)$$

$$\leq \sum_{j=1}^{3} |A_j \ast \varphi_\delta(x)| + c \left(\frac{|S_+ \cap U_k|}{|S|} \right)^\delta M_S(a_k).$$

This is what we need since we have already obtained desired estimates for $A_j \ast \varphi_\delta(x)$ ($j = 1, 2, 3$) and by (3.6) and (3.7) we have $||a_k||_2^2 \leq c2^{2k}|O_k|$. This completes a proof of (3.8).

4. Double singular integrals. Let $K^{(i)} \in C^\infty(\mathbb{R}^n_+ - \{0\})$ be such that

$$\int_{|x^{(i)}|=1} K^{(i)}(x^{(i)})(P_1x^{(i)}, x^{(i)}) \, d\sigma(x^{(i)}) = 0,$$

$$K^{(i)}(A_{t_i}^{(i)}x^{(i)}) = t_i^{-n} K^{(i)}(x^{(i)}) \quad \text{for all } t_i > 0,$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
where \(d\sigma(x^{(i)}) \) is the area element of \(S^{n_i-1} = \{ x^{(i)} : |x^{(i)}| = 1 \} \). For \(\varepsilon_1, \varepsilon_2 > 0 \), set
\[
K_{\varepsilon_1, \varepsilon_2}(x) = \prod_{i=1,2} K^{(i)}(x^{(i)}) \{ 1 - \chi_{[0,1]}(\varepsilon_1^{-1} \rho^{(i)}(x^{(i)})) \}.
\]
We can generalize the weak type estimates of [3 and 7].

Theorem 3. Let \(A \) and \(B \) be compact sets of \(\mathbb{R}^n \). If \(f \) is a function on \(\mathbb{R}^n \) such that \(\int_B |f| \log(2 + |f|) \, dx < \infty \) and \(\text{supp } f \subset B \), then
\[
\left\{ x \in A : \sup_{\varepsilon_1, \varepsilon_2 > 0} |f \ast K_{\varepsilon_1, \varepsilon_2}(x)| > 1 \right\} \leq c \int_B |f| \log(2 + |f|) \, dx,
\]
where \(c \) is a constant independent of \(f \).

Combining results of [7] with Theorem 2, we obtain the equivalence with respect to the \(L^p \)-norms of Lusin functions and radial maximal functions (radial maximal functions can be replaced by nontangential maximal functions). Now we briefly see how this equivalence implies Theorem 3. Let \(h \in C^\infty(\mathbb{R}^1) \) be a nonnegative function such that \(h(u) = 1 \) if \(u < 1 \) and \(h(u) = 0 \) if \(u \geq 2 \). Set
\[
K'_{\varepsilon_1, \varepsilon_2}(x) = K_{\varepsilon_1, \varepsilon_2}(x) \prod_{i=1,2} h(M \rho^{(i)}(x^{(i)}))
\]
where \(M > 0 \). Then, by Stein’s theorem on limits of sequences of operators, to prove Theorem 3 it is sufficient to show that
\[
\sup_{\varepsilon_1, \varepsilon_2 > 0} |f \ast K'_{\varepsilon_1, \varepsilon_2}(x)| < \infty \quad \text{for almost every } x,
\]
where \(f \) is a function with compact support such that \(\int |f| \log(2 + |f|) \, dx < \infty \), \(\int f(x^{(1)}, x^{(2)}) \, dx^{(2)} = 0 \) for all \(x^{(1)} \in \mathbb{R}^{n_1}, \int f(x^{(1)}, x^{(2)}) \, dx^{(1)} = 0 \) for all \(x^{(2)} \in \mathbb{R}^{n_2} \). We can show by a direct estimate that \(f^+ \in L^p \) for some \(p < 1 \). Thus, as in [7], (4.1) follows from the inequality
\[
\sup_{\delta > 0} \| (f \ast K^{(\delta)})^+ \|_p \leq c \| f^+ \|_p,
\]
where
\[
K^{(\delta)}(x) = \prod_{i=1,2} K^{(i)}(x^{(i)}) h(M \rho^{(i)}(x^{(i)})) \{ 1 - h(\delta^{-1} \rho^{(i)}(x^{(i)})) \}.
\]
(4.2) is proved as follows. First, by Theorem 2 we have that \(\| (f \ast K^{(\delta)})^+ \|_p \leq c \| S(f \ast K^{(\delta)}) \|_p \). Next, it is not difficult to see that \(\sup_{\delta > 0} \| S(f \ast K^{(\delta)}) \|_p \leq c \| S(f) \|_p \). Finally, from results of [7] it follows that \(\| S(f) \|_p \leq c \| f^+ \|_p \). Combining these results, we obtain (4.2). See [7] for more details.

References

MATHEMATICAL INSTITUTE, TÔHOKU UNIVERSITY, SENDAI, 980, JAPAN