Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Inequalities for sums of independent random variables


Authors: N. L. Carothers and S. J. Dilworth
Journal: Proc. Amer. Math. Soc. 104 (1988), 221-226
MSC: Primary 60B11; Secondary 46E99, 46M35, 60G50
DOI: https://doi.org/10.1090/S0002-9939-1988-0958071-4
MathSciNet review: 958071
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A moment inequality is proved for sums of independent random variables in the Lorentz spaces $ {L_{p,q}}$, thus extending an inequality of Rosenthal. The latter result is used in combination with a square function inequality to give a proof of a Banach space isomorphism theorem. Further moment inequalities are also proved.


References [Enhancements On Off] (What's this?)

  • [1] J. Bergh and J. Löfstrom, Interpolation spaces, Grundlehren Math. Wiss., vol. 223, Springer-Verlag, 1976.
  • [2] W. Bryc and S. Kwapień, On the conditional expectation with respect to a sequence of independent $ \sigma $-fields, Z. Wahrsch. Verw. Gebiete 46 (1979), 221-225. MR 516742 (80e:60015)
  • [3] N. L. Carothers and S. J. Dilworth, Geometry of Lorentz spaces via interpolation, "Longhorn Notes", Univ. of Texas Functional Analysis Seminar, 1985-86. MR 1017049 (90g:46044)
  • [4] -, Equidistributed random variables in $ {L_{p,q}}$, J. Funct. Anal. (to appear).
  • [5] -, Subspaces of $ {L_{p,q}}$, Proc. Amer. Math. Soc. (to appear).
  • [6] S. J. Dilworth, Interpolation of intersections of $ {L_p}$ spaces, Arch. Math. 50 (1988), 51-55. MR 925494 (89e:46030)
  • [7] T. Holmstedt, Interpolation of quasi-normed spaces, Math. Scand. 26 (1970), 177-199. MR 0415352 (54:3440)
  • [8] W. B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc. no. 217, 1979. MR 527010 (82j:46025)
  • [9] W. B. Johnson and G. Schechtman, Sums of independent random variables in rearrangement invariant function spaces, preprint (1986). MR 985390 (90h:60045)
  • [10] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. II. Function spaces, Springer-Verlag, 1979. MR 540367 (81c:46001)
  • [11] H. P. Rosenthal, On the subspaces of $ {L_p}(p{\text{ > }}2)$ spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273-303. MR 0271721 (42:6602)
  • [12] E. M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory, Ann. of Math. Studies, no. 63, Princeton Univ. Press, Princeton, N. J., 1970. MR 0252961 (40:6176)
  • [13] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N.J., 1971. MR 0304972 (46:4102)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60B11, 46E99, 46M35, 60G50

Retrieve articles in all journals with MSC: 60B11, 46E99, 46M35, 60G50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0958071-4
Keywords: Lorentz function spaces, sums of independent random variables, Lions-Peetre interpolation
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society