ABSTRACT. It is shown that the C*-algebra $M(A)/A$, where A is a nonunital separable simple AF C*-algebra and $M(A)$ is the multiplier algebra of A, is simple if and only if A has a continuous scale or A is elementary. Some results concerning the ideal structure of $M(A)/A$ are also obtained in the case that it is nontrivial.

1. Introduction. Let K denote the C*-algebra of all compact operators on a separable Hilbert space H, and $B(H)$ the C*-algebra of all bounded operators on H. Then $B(H)$ is the multiplier algebra of K. (The multiplier algebra of a C*-algebra is the idealiser of the C*-algebra in its double dual.) It is well known that $B(H)/K$ is simple. Let A be a separable simple AF C*-algebra with multiplier algebra $M(A)$. When is $M(A)/A$ simple? Elliott showed [4] that if A is an infinite, nonelementary separable matroid C*-algebra (which is a simple AF C*-algebra) then $M(A)/A$ has precisely one nonzero proper (closed, two sided) ideal. He also showed that if A is a finite separable matroid C*-algebra, then $M(A)/A$ is simple. In this paper we shall consider a separable simple AF C*-algebra A. We shall show that $M(A)/A$ is simple if and only if either A has a continuous scale or $A = K$. We shall also give some other results concerning the ideal structure of $M(A)/A$.

Recall that a separable C*-algebra A is AF if whenever $a_1, \ldots, a_n \in A$ and $\varepsilon > 0$ are given, there exist a finite dimensional C*-subalgebra B of A and elements $b_1, \ldots, b_n \in B$ such that $\|a_i - b_i\| < \varepsilon$, $i = 1, 2, \ldots, n$. Furthermore, if we are initially also given a finite dimension C*-subalgebra B_0, we may choose $B \supseteq B_0$.

Let A be a nonelementary separable simple AF C*-algebra and G the corresponding simple dimension group with scale $\Gamma(G)$. Fix an element $u \in G^+ \backslash \{0\}$. Let $\mathcal{S} = S_u(G)$ denote the set of all homomorphisms $\tau : G \to \mathbb{R}$ such that $\tau(G^+) \geq 0$ and $\tau(u) = 1$. Then \mathcal{S} is a convex compact subset of the locally convex space \mathbb{R}^G of all functions $f : G \to \mathbb{R}$ with the product topology. Each $\tau \in \mathcal{S}$ can be viewed as a trace on A such that for each projection $p \in A$, $\tau(p) < \infty$. We shall denote the extreme points of \mathcal{S} by $E(\mathcal{S})$. Let $\text{Aff}(\mathcal{S})$ denote the set of all affine, real continuous functions on \mathcal{S}. We have a positive homomorphism $\theta : G \to \text{Aff}(\mathcal{S})$, $a \to \hat{a}$, where $\hat{a}(\tau) = \tau(a)$. By [3, Corollary 4.2], θ determines the order on G in the sense that $G^+ = \{a \in G : \hat{a} \geq 0\} \cup \{0\}$. Hence $G^+ \cap \ker \theta = \{0\}$. Moreover, $S = S_u(G)$ is a Choquet simplex and $H = \theta(G)$ is a dense additive subgroup of $\text{Aff}(\mathcal{S})$. For the details of simple dimension groups readers are referred to [3, Chapter 4].
For every $\tau \in S$ (as a trace), we can extend τ to a trace on $M(A)_+$. In particular, $\tau(1) = \sup\{\tau(e_n): n = 1, 2, \ldots\}$, where $\{e_n\}$ is an approximate identity for A consisting of projections, and 1 is the unit of $M(A)$. As in [5, Theorem 2], one can easily show that $\Gamma(G) = \{a \in G^+: \tilde{a}(\tau) < \tau(1) \text{ for all } \tau \in S\}$, provided that A is nonunital.

We say that A has a continuous scale if $\hat{\tau}(\tau)$ is bounded and continuous on S, and a bounded scale if $\hat{\tau}(\tau)$ is bounded on S; we say that A is finite if $\hat{\tau}(\tau) < \infty$ for all $\tau \in S$. We say that A is infinite if A is not finite, and that A is stable if $\hat{\tau}(\tau) \to \infty$ for all $\tau \in S$, which is equivalent to saying that $A \cong A \otimes K$ (see [2, Theorem 4.9]).

2. Simplicity of $M(A)/A$.

Lemma 1. Let A be a nonelementary separable infinite simple AF C^*-algebra. Let $F = \{\tau \in S: \hat{\tau}(\tau) = \infty\}$ and let J_τ be the closure of the set $\{a \in M(A): \tau(a^{*}a) < \infty\}$ where τ is a fixed element in F. Then J_τ is an ideal of $M(A)$ such that $A \subseteq J_\tau \subset M(A)$.

Proof. Let $J_\tau^0 = \{a \in M(A): \tau(a^{*}a) < \infty\}$. Then J_τ^0 is a τ-invariant linear subspace of $M(A)$. Let $a \in J_\tau^0, b \in M(A)$. Then

$$|\tau(a^{*}b^{*}ba)| \leq ||b||^2 \tau(a^{*}a) < \infty.$$

Hence $ba \in J_\tau^0$; similarly $ab \in J_\tau^0$. Thus J_τ is a closed ideal of $M(A)$. Since for every projection $p \in A$, $\tau(p) < \infty$ for all $\tau \in S$, and A is AF, we conclude that $A \subseteq J_\tau$. Let $\{e_n\}$ be an approximate identity of A consisting of projections, and set $f_n = e_n - e_{n-1}$ ($e_0 = 0$). Since $\theta(G)$ is dense in Aff(S), there are projections $q_n \in A$ such that $0 \leq \theta[q_n] \leq 2^{-n} (1/\theta[f_n]) \theta[f_n]$, if $\theta[f_n] > 1$, or $0 < \theta[q_n] \leq 2^{-n} \theta[f_n]$, if $\theta[f_n] \leq 1$, where $||\theta[f_n]|| = \sup\{\tau(f_n): \tau \in S\}$. We may assume that $q_n \leq f_n$. Since $q_n \neq 0$ and $q_n \leq f_n$, we have that $q = \sum_{n=1}^{\infty} q_n$ is a projection in $M(A)$ but not in A. Moreover $\tau(q) = \sum_{n=1}^{\infty} \tau(q_n) \leq 1 < \infty$. So $q \in J_\tau^0 \subseteq J_\tau$. Hence $J_\tau \supseteq A$.

Now we show that $1 \notin J_\tau$. Otherwise there is $a \in (J_\tau^0)_+$ such that $||1 - a|| < \frac{1}{4}$. Thus $sp(a) \subset (\frac{3}{4}, \frac{5}{4})$. This implies that $0 \leq 1 \leq \frac{3}{4} a$. Then $\tau(1) < \infty$, a contradiction.

Blackadar showed in [2, Theorem 4.8] that A has a bounded scale if, and only if, A is algebraically simple. If A has a bounded scale, then must $M(A)/A$ be simple?

We will see after the following lemma.

Lemma 2. Let A be a nonunital, nonelementary simple AF C^*-algebra. Let I_0 be the closure of

$$I_{00} = \{a \in M(A): \text{ there is } \{a_n\} \subset A \text{ such that } \tau((a - a_n)^{*}(a - a_n)) \text{ converges to zero uniformly on } S\}.$$

Then

1. I_0 is a (closed) ideal of $M(A)$, $A \not\subseteq I_0 \subseteq M(A)$, and I_0 is the smallest such ideal.
2. If A is algebraically simple, then I_{00} is already closed.
3. If A has no continuous scale, $I_0 \not\subseteq M(A)$.

Proof. Clearly I_{00} is a τ-invariant linear subspace of $M(A)$ containing A. Suppose that $a \in M(A), b \in M(A)$, and $a_n \in A$ are such that $\tau((a-a_n)^{*}(a-a_n)) \to 0$ uniformly on S. We have

$$\tau\left[\tau[(b(a-a_n)^{*})(b'(a-a_n))]\right] \leq ||b||^2 \tau((a-a_n)^{*}(a-a_n)) \to 0$$
uniformly on S. Since $ba_n \in A$, by the definition of I_{00}, $ba \in I_{00}$. Similarly $ab \in I_{00}$. Hence I_{00} is an ideal of $M(A)$. So I_0 is a closed ideal of $M(A)$. The projection q constructed in the first part of the proof of Lemma 1 is continuous on S. Moreover, we see that $\tau\left(\sum_{k=1}^{n} q_k\right)$ converges uniformly to $\tau(q)$ on S. Hence

$$\tau\left(\left(q - \sum_{k=1}^{n} q_k\right)^*\left(q - \sum_{k=1}^{n} q_k\right)\right) = \tau\left(q - \sum_{k=1}^{n} q_k\right) \to 0$$

uniformly on S. Thus $q \in I_0 \setminus A$ and $I_0 \not\subset A$.

Let g be a projection in I_0, and let us show that $g \in I_{00}$. Since I_{00} is dense in I_0, we have that $gI_{00}g$ contains a positive element close to g, and hence contains g.

Suppose that I is another ideal such that $I \not\subset A$. Let $\{e_k\}$ be an approximate identity of A consisting of projections, and set $f_n = e_n - e_{n-1}$ ($e_0 = 0$). As in the proof of [4, Theorem 3.1], there is a projection $p \in I \setminus A$ such that $e_kp = pe_k$. To show $I_0 \subseteq I$, it is enough to show that every projection $g \in I_0$ satisfying $e_kg = ge_k$ is in I, as in the proof of [4, Theorem 3.2]. Let g be such a projection. Then $g = \sum f_n$. Also, $g \in I_{00}$, and so $\tau(g)$ is finite and continuous on S; therefore $\sum_{k=1}^{n} \tau(gf_k)$ converges to $\tau(g)$ uniformly on S, by Dini’s theorem. We may assume that $p_{f_1} \neq 0$; then $\{\tau(pf_k) : \tau \in S\} > 0$. Since $\sum_{n=1}^{\infty} \tau(gf_n)$ converges uniformly on S, we can choose an integer n_0 such that

$$\sum_{k \geq n_0} \tau(gf_k) < \tau(pf_1) \quad \text{for all} \quad \tau \in S.$$

Then since infinitely many pf_n are nonzero, there exists a partition of the set $\{n_0 + 1, n_0 + 2, \ldots\}$ into finite subsets N_1, N_2, \ldots (of consecutive integers) such that for each $n = 1, 2, \ldots$, either $N_n = \emptyset$ or

$$\sum_{k \in N_n} \tau(gf_k) < \tau(pf_n) \quad \text{for all} \quad \tau \in S.$$

Thus $\left|\sum_{k \in N_n} gf_k\right| < |pf_n|$. There exists for each $n = 1, 2, \ldots, u_n \in A$ such that $u_nu_n^* = \sum_{k \in N_n} gf_k$ and $u_nu_n \leq pf_n$. Set $u = \sum_{n=1}^{\infty} u_n$. Then $u \in M(A)$, $uu^* = g - ge_{n_0}$, and $up = u$. Hence u, u^*, and g are in I. So $I_0 \subseteq I$.

Now suppose that A is algebraically simple, and let $a \in M(A)$, $b_n \in I_{00}$ be such that $\|b_n - a\| \to 0$.

We may assume that $|a - b_n| \leq 1$. Then

$$\left|\tau((a - b_n)^*(a - b_n))\right| \leq \|a - b_n\|\tau(|a - b_n|).$$

Since A has a bounded scale, $\tau(|a - b_n|) \leq \tau(1) \leq N$, for all $\tau \in S$ and some $N > 0$. Hence $\tau((a - b_n)^*(a - b_n)) \to 0$ uniformly on S. Let $a_n \in A$ be such that $\tau((b_n - a_n)^*(b_n - a_n)) < 1/n$ uniformly on S. We have

$$\tau((a - a_n)^*(a - a_n))^{1/2} \leq \tau((a - b_n)^*(a - b_n))^{1/2} + \tau((b_n - a_n)^*(b_n - a_n))^{1/2} \to 0$$

uniformly on S. We conclude that I_{00} is closed.

Finally suppose that A has no continuous scale. Then $1 \notin I_0$, i.e. $I_0 \not\subset M(A)$.

THEOREM 1. Let A be a separable simple AF C^*-algebra. Then $M(A)/A$ is simple if, and only if, either A has a continuous scale or A is elementary.

Proof. Suppose that A is not elementary and has no continuous scale. By Lemma 2, I_0 is a closed ideal of $M(A)$ such that $A \not\subset I_0 \not\subset M(A)$. In other words, $M(A)/A$ is not simple.
If A is elementary, it is well known that $M(A)/A$ is simple. We may now assume that A has a continuous scale, i.e. that $\tau(1)$ is finite and continuous on S. By Dini’s theorem, $\tau(e_n)$ converges to $\tau(1)$ uniformly on S. By the definition of I_0, $1 \in I_0$. Hence $I_0 = M(A)$. By Lemma 2, I_0 is the smallest ideal containing A. We conclude that $M(A)/A$ is simple.

REMARKS. Theorem 1 implies Theorem 3.1 of [4].

Given a simple dimension group G we can construct a separable, nonunital, simple AF C^*-algebra A with a continuous scale such that the dimension group of A is G. So for every separable, nonunital simple AF C^*-algebra A, there is a separable, nonunital simple AF C^*-algebra B such that $A \otimes K \cong B \otimes K$ and $M(B)/B$ is simple.

3. Ideals of $M(A)/A$. Let A be a nonunital, separable, simple AF C^*-algebra, and let G and $S = SU(G)$ be as before. Set $F = \{\tau \in S: \tau(1) = \infty\}$ and let α be a subset of $F \cap E(S)$. Let I_α denote the closure of the set $\{\alpha \in M(A): \tau(\alpha^* \alpha) < \infty \text{ for all } \tau \in \alpha\}$. Then, as is easily seen, I_α is an ideal of $M(A)$ containing A. The following theorem is a generalization of Theorem 3.2 of [4].

Theorem 2. Let A be a nonunital, nonelementary, separable simple AF C^*-algebra. Suppose that $E(S)$ has only finitely many points and $F \cap E(S)$ has n points. Then $M(A)/A$ has exactly $2^n - 1$ different proper closed ideals, each of which has the form I_α/A.

Proof. Suppose that $n = 0$. Since $E(S)$ has finitely many points, A has a continuous scale. In this case, Theorem 2 follows from Theorem 1.

We now suppose that $F \cap E(S) = \{\tau_1, \ldots, \tau_n\}$, $n \geq 1$. As in the proof of Lemma 1, each I_α is a proper closed ideal of $M(A)$ containing A properly. Let us show that if α, β are nonempty subsets of $F \cap E(S)$ with $\alpha \neq \beta$, then $I_\alpha \neq I_\beta$. We may assume that $\alpha = \{\tau_1, \ldots, \tau_k\}$ where $k < n$, and that $\tau_{k+1} \in \beta$. For each $n = 1, 2, \ldots$, let $h_n \in \text{Aff}(S)$ be such that

\[\theta(f_n)(\tau_{k+1}) > h_n(\tau_{k+1}) > \theta(f_n)(\tau_{k+1}), \]

and

\[0 < h_n(\tau_i) \leq \min(2^{-n}, \theta(f_n)(\tau_i)), \quad i = 1, 2, \ldots, k. \]

(Since $E(S)$ is finite, the existence of h_n is clear.) Since $\theta(G)$ is dense in $\text{Aff}(S)$, we may assume that $h_n \in \theta(G)$. So we have projections $p_n \in A$ such that $p_n \leq f_n$ and $\tau_i(p_n) \leq 2^{-n}$, $i = 1, 2, \ldots, k$, $\tau_{k+1}(p_n) \geq \frac{1}{2}\tau_{k+1}(f_n)$. Then with $p = \sum p_n$, we have $p \in M(A)$ and $p \notin I_\beta$; this is proved in the same way as $I_\alpha \neq I_\beta$ in Lemma 1. Thus $I_\alpha \neq I_\beta$.

Suppose that I is a closed ideal of $M(A)$. We shall show that I is equal to the smallest I_α which contains it (α could be the empty set).

Let I_α be such an ideal. Write $F \cap (E(S) \setminus \alpha) = \{\tau_1, \tau_2, \ldots, \tau_s\}$, and set $\alpha_1 = \alpha \cup \{\tau_i\}$. Since $I \notin I_{\alpha_1}$, there are projections $g_i \in I \setminus I_{\alpha_1}$ such that $f_k g_i = g_i f_k$ for $i = 1, 2, \ldots, s$ and $k = 1, 2, \ldots$ (see the proof of [4, Theorem 3.2]). Thus $\tau_i(g_i) = \infty$.

Changing $g_i f_k$ into equivalent projections, we may assume that they belong to a common finite dimensional C^*-subalgebra of $f_k A f_k$, say B_k. Then the range projection h_k of $\sum_{i=1}^s g_i f_k$ exists in B_k. Since B_k is a finite dimensional C^*-algebra, $\{(\sum_{i=1}^s g_i f_k)^{1/n} \to h_k \}$ in norm. Hence $\sum_{i=1}^s g_i f_k$ has an inverse b_k in the C^*-subalgebra $h_k B_k h_k$. Set $h = \sum_{k=1}^\infty h_k$ and $b = \sum_{k=1}^\infty b_k$. Both h and b are
in \(M(A) \). Since \(h = b(\sum_{i=1}^{s} g_i) \), \(h \in I \). Clearly \(\tau(h) \geq \tau(g_i) \), \(i = 1, 2, \ldots, s \). So \(\tau_i(h) = \infty \) for \(i = 1, 2, \ldots, s \).

As in the proof of [4, Theorem 3.27], to show that \(I \supset I_\alpha \), it is enough to show that every projection \(q \in I_\alpha \) such that \(f_k q = q f_k \) is in \(I \). Suppose that \(q \) is such a projection. There exists a partition of \(\{1, 2, \ldots\} \) into finite sets \(N_1, N_2, \ldots \) (of consecutive integers) such that for each \(m = 1, 2, \ldots, s \),

\[
\tau_i(q f_m) < \sum_{k \in N_i} \tau_i(h_k), \quad i = 1, 2, \ldots, s.
\]

Let \(\beta_m \) denote the set of \(\tau \) in \(E(S) \) such that

\[
\tau(q f_m) > \sum_{k \in N_m} \tau(h_k).
\]

Then \(\beta_m \subset \alpha \cup \{E(S) \setminus F\} \). Since \(\theta(G) \) is dense in \(\text{Aff}(S) \), for each \(m \), there is a projection \(q_m < q f_m \) such that

\[
0 < \tau(q f_m - q_m) < \sum_{k \in N_m} \tau(h_k)
\]

for \(\tau \in \beta_m \) and

\[
0 < \tau(q_m) < 1/2^m \quad \text{for} \quad \tau \in E(S) \setminus \beta_m.
\]

Thus \(q_0 = \sum_{m=1}^{\infty} q_m \) is in \(I_0 \), the closure of \(\{a \in M(A) : \tau(a^* a) < \infty \text{ for all } \tau \in E(S)\} \). Set \(q' = q - q_0 \); then

\[
\tau(q' f_m) < \sum_{k \in N_m} \tau(h_k)
\]

for all \(\tau \in E(S) \), hence for all \(\tau \in S \). Therefore there exists for each \(m = 1, 2, \ldots, v_m \in A \) such that \(v_m* v_m = q' f_m \) and \(v_m* v_m \leq \sum_{k \in N_m} h_k \). Set \(v = \sum_{m=1}^{\infty} v_m \); then \(v \in M(A) \), and \(q' f_m v = v \sum_{k \in N_m} h_k = v_m \). In particular \(v \) is a partial isometry, and \(v* v = q' = q - q_0 \) and \(v h = v \). Then \(v, v* \), and therefore \(q - q_0 \) are in \(I \). Since \(E(S) \) is finite, by Lemma 2, \(I_0 \) is the smallest ideal in \(M(A) \) properly containing \(A \). So \(I \supset I_0 \), whence \(q_0 \in I \) and \(q \in I \). This completes the proof.

Theorem 3. Let \(A \) be a nonelementary separable infinite simple AF \(C^* \)-algebra. Suppose that \(F \cap E(S) \) is an infinite set. Then \(M(A)/A \) has infinitely many different (closed) ideals.

Proof. Let \(\{\tau_i\} \) be a sequence in \(F \cap E(S) \). Let \(F_k = \{\tau_i : i = 1, 2, \ldots, k + 1\} \) and let \(J_k \) be the closure of \(\{a \in M(A) : \tau_i(a^* a) < \infty, i = 1, 2, \ldots, k + 1\} \). Define

\[
h_n(\tau_i) = \min\{2^{-n-1}, \theta([f_n])(\tau_i)\}, \quad i = 1, 2, \ldots, k,
\]

and

\[
h_n(\tau_{k+1}) = \frac{1}{2} \theta([f_n])(\tau_{k+1}).
\]

Define \(h_n(\tau) = h_n(\tau_i) = \bar{h}_n(\tau) \) for \(\tau \in F_k \), \(h_n(t) = \inf\{h_n(\tau) : \tau \in F_k\} \), \(\bar{h}_n(t) = \sup\{h_n(\tau) : \tau \in F_k\} \), for \(t \in S \setminus F_k \). It is easily verified that \(h_n \) is upper semicontinuous and convex while \(\bar{h}_n \) is lower semicontinuous and concave. By [1, Theorem II.3.10] there exists a real affine continuous function \(g_n^* \) on \(S \) such that
0 < \frac{h_n}{g_n} \leq \frac{\tau}{h_n}.\] Hence \(g'_n|F_k = h_n\). Since \(\theta(G)\) is dense in \(\text{Aff}(S)\), for each \(n\) there is \(g_n \in \theta(G)\) such that
\[
|g_n(t) - \frac{1}{2}g'_n(t)| < \frac{1}{4} \inf\{h_n(\tau) : \tau \in F_k\}
\]
for all \(t \in S\). Consequently, we have projections \(p_n \in A\) such that \(p_n \leq f_n, \tau_i(p_n) \leq 2^{-n}, i = 1, 2, \ldots, k\) and \(\tau_{k+1}(p_n) \geq \frac{1}{8} \tau_{k+1}(f_n)\). Set \(p = \sum_{n=1}^{\infty} p_n\). Then \(p \in M(A)\). It is easily verified that \(p \in J_k\) but \(p \notin J_{k+1}\) (just as \(1 \notin J_\tau\) in Lemma 1). Thus \(J_k \supsetneq J_{k+1}\). This completes the proof.

REMARK. Let \(A\) be a nonunital, nonelementary, separable simple \(AF\) \(C^*\)-algebra without continuous scale, such that \(E(S)\) is infinite. If furthermore, \(E(S)\) is closed or, equivalently, \(S\) is a Bauer simplex, then every real continuous function on \(E(S)\) can be extended to a function in \(\text{Aff}(S)\). Therefore an argument similar to that used in this paper shows that \(M(A)/A\) has infinitely many closed ideals. We believe that \(M(A)/A\) has infinitely many closed ideals even if \(E(S)\) is not closed. However, if \(S\) is a general Choquet simplex, a continuous function on \(E(S)\) may not extend to a continuous affine function on \(S\), and this creates a technical problem. Other methods may be needed.

ACKNOWLEDGEMENT. The author is grateful to the referee for his many suggestions.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SANTA BARBARA, CALIFORNIA 93106

Current address: Department of Mathematics, East China Normal University, Shanghai 200062, China

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use