The Schottky problem on pants

Author:
R. C. Penner

Journal:
Proc. Amer. Math. Soc. **104** (1988), 253-256

MSC:
Primary 30C20; Secondary 30F20, 32G15, 57N05

MathSciNet review:
958077

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note, we consider the classical problem of Schottky of characterizing the set of period matrices which arise from all possible conformal structures on a fixed topological surface. Restricting to a planar surface with Euler characteristic , we find that a real symmetric -by- matrix arises as a period matrix if and only if the matrix has vanishing row sums, and the diagonal entries are positive and satisfy all three possible strict triangle inequalities. The technique of proof involves extremal and harmonic lengths of curve classes.

**[A1]**Lars V. Ahlfors,*Complex analysis*, 3rd ed., McGraw-Hill Book Co., New York, 1978. An introduction to the theory of analytic functions of one complex variable; International Series in Pure and Applied Mathematics. MR**510197****[A2]**-,*Conformal invariants*, McGraw-Hill, 1973.**[AdC]**Enrico Arbarello and Corrado De Concini,*On a set of equations characterizing Riemann matrices*, Ann. of Math. (2)**120**(1984), no. 1, 119–140. MR**750718**, 10.2307/2007073**[FLP]**A. Fathi, F. Laudenbach, V. Poenaru, et al.,*Travaux de Thurston sur les surfaces*, Astérisque**30**(1979), 66-67.**[LO]**H. J. Landau and R. Osserman,*On analytic mappings of Riemann surfaces*, J. Analyse Math.**7**(1959/1960), 249–279. MR**0122980****[Mu]**Motohico Mulase,*Cohomological structure in soliton equations and Jacobian varieties*, J. Differential Geom.**19**(1984), no. 2, 403–430. MR**755232****[LV]**O. Lehto and K. I. Virtanen,*Quasiconformal mappings in the plane*, 2nd ed., Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas; Die Grundlehren der mathematischen Wissenschaften, Band 126. MR**0344463****[Sa]**Mikio Sato and Yasuko Sato,*Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold*, Nonlinear partial differential equations in applied science (Tokyo, 1982), North-Holland Math. Stud., vol. 81, North-Holland, Amsterdam, 1983, pp. 259–271. MR**730247****[Sh]**Takahiro Shiota,*Characterization of Jacobian varieties in terms of soliton equations*, Invent. Math.**83**(1986), no. 2, 333–382. MR**818357**, 10.1007/BF01388967**[SW]**Graeme Segal and George Wilson,*Loop groups and equations of KdV type*, Inst. Hautes Études Sci. Publ. Math.**61**(1985), 5–65. MR**783348****[Th]**W. P. Thurston,*The geometry and topology of three-manifolds*, Princeton Univ. Lecture Notes, 1979.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30C20,
30F20,
32G15,
57N05

Retrieve articles in all journals with MSC: 30C20, 30F20, 32G15, 57N05

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1988-0958077-5

Article copyright:
© Copyright 1988
American Mathematical Society