Optimal partitioning of a measurable space

Authors:
Jerzy Legut and Maciej Wilczyński

Journal:
Proc. Amer. Math. Soc. **104** (1988), 262-264

MSC:
Primary 28A12; Secondary 60A99, 90D99

DOI:
https://doi.org/10.1090/S0002-9939-1988-0958079-9

MathSciNet review:
958079

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An -optimal partition of a measurable space according to nonatomic probability measures is defined. A minmax theorem is used to find a method of obtaining the -optimal partition. An application to a problem of fair division is given.

**[1]**J. P. Aubin,*Mathematical methods of game and economic theory*, North-Holland, 1979, pp. 204-225. MR**556865 (83a:90005)****[2]**L. Dubins and E. Spanier,*How to cut a cake fairly*, Amer. Math. Monthly**68**(1961), 1-17. MR**0129031 (23:B2068)****[3]**A. Dvoretzky, A. Wald and J. Wolfowitz,*Relations among certain ranges of vector measures*, Pacific J. Math.**1**(1951), 59-74. MR**0043865 (13:331f)****[4]**J. Elton, T. Hill and R. Kertz,*Optimal partitioning inequalities for nonatomic probability measures*, Trans. Amer. Math. Soc.**296**(1986), 703-725. MR**846603 (87m:60012)****[5]**B. Knaster,*Sur le probleme du partage pragmatique de H. Steinhaus*, Ann. Soc. Polon. Math.**19**(1946), 228-230.**[6]**J. Legut,*Inequalities for**-optimal partitioning of a measurable space*, Proc. Amer. Math. Soc. (to appear). MR**969055 (90a:60004)****[7]**K. Urbanik,*Quelques theoremes sur les measures*, Fund. Math.**41**(1954), 150-162. MR**0063427 (16:120d)****[8]**D. Weller,*Fair division of a measurable space*, J. Math. Econ.**14**(1985), 5-17. MR**816212 (87d:90022)****[9]**M. Wilczyński,*Optimal partitioning inequalities for nonatomic finite measures*, unpublished result.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
28A12,
60A99,
90D99

Retrieve articles in all journals with MSC: 28A12, 60A99, 90D99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0958079-9

Article copyright:
© Copyright 1988
American Mathematical Society