Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Zonoids with minimal volume-product--a new proof

Authors: Y. Gordon, M. Meyer and S. Reisner
Journal: Proc. Amer. Math. Soc. 104 (1988), 273-276
MSC: Primary 52A40; Secondary 52A20
MathSciNet review: 958082
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A new and simple proof of the following result is given: The product of the volumes of a symmetric zonoid $ A$ in $ {{\mathbf{R}}^n}$ and of its polar body is minimal if and only if $ A$ is the Minkowski sum of $ n$ segments.

References [Enhancements On Off] (What's this?)

  • [1] J. Bourgain and V. D. Milman, New volume ratio properties for convex symmetric bodies in 𝑅ⁿ, Invent. Math. 88 (1987), no. 2, 319–340. MR 880954, 10.1007/BF01388911
  • [2] Kurt Leichtweiss, Konvexe Mengen, Springer-Verlag, Berlin-New York, 1980 (German). Hochschultext. MR 586235
  • [3] Mathieu Meyer, Une caractérisation volumique de certains espaces normés de dimension finie, Israel J. Math. 55 (1986), no. 3, 317–326 (French, with English summary). MR 876398, 10.1007/BF02765029
  • [4] -, Sur le produit volumique de certain éspaces normés, Sem. d'Initiation à l'Analyse, 25 ème année, 1985-1986, no. 4.
  • [5] Shlomo Reisner, Random polytopes and the volume-product of symmetric convex bodies, Math. Scand. 57 (1985), no. 2, 386–392. MR 832364
  • [6] Shlomo Reisner, Zonoids with minimal volume-product, Math. Z. 192 (1986), no. 3, 339–346. MR 845207, 10.1007/BF01164009
  • [7] Shlomo Reisner, Minimal volume-product in Banach spaces with a 1-unconditional basis, J. London Math. Soc. (2) 36 (1987), no. 1, 126–136. MR 897680, 10.1112/jlms/s2-36.1.126
  • [8] J. Saint-Raymond, Sur le volume des corps convexes symétriques, Initiation Seminar on Analysis: G. Choquet-M. Rogalski-J. Saint-Raymond, 20th Year: 1980/1981, Publ. Math. Univ. Pierre et Marie Curie, vol. 46, Univ. Paris VI, Paris, 1981, pp. Exp. No. 11, 25 (French). MR 670798
  • [9] L. A. Santaló, Un invariante afin para los cuerpos convexos del espacio de $ n$ dimensiones, Portugal. Math. 8 (1949), 155-161.
  • [10] Rolf Schneider and Wolfgang Weil, Zonoids and related topics, Convexity and its applications, Birkhäuser, Basel, 1983, pp. 296–317. MR 731116
  • [11] Albert W. Marshall, Ingram Olkin, and Frank Proschan, Monotonicity of ratios of means and other applications of majorization., Inequalities (Proc. Sympos. Wright-Patterson Air Force Base, Ohio, 1965), Academic Press, New York, 1967, pp. 177–190. MR 0237727

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 52A40, 52A20

Retrieve articles in all journals with MSC: 52A40, 52A20

Additional Information

Article copyright: © Copyright 1988 American Mathematical Society