Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Manifolds of almost half of the maximal volume


Author: Oguz C. Durumeric
Journal: Proc. Amer. Math. Soc. 104 (1988), 277-283
MSC: Primary 53C20
DOI: https://doi.org/10.1090/S0002-9939-1988-0958083-0
Addendum: Proc. Amer. Math. Soc. 107 (1989), 1145-1146.
MathSciNet review: 958083
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Riemannian manifolds with sectional curvature $ \geq 1$ and volume slightly less (in terms of the dimension and the upper bound of the sectional curvature) than $ V$, the half of the volume of the standard sphere, are classified. The behavior of the critical points of the distance function on manifolds whose volume differ from $ V$ in terms of constructible constants in terms of the dimension is discussed.


References [Enhancements On Off] (What's this?)

  • [BC] R. L. Bishop and R. J. Crittenden, Geometry of manifolds, Pure and Appl. Math., vol. 15, Academic Press, New York and London, 1964. MR 0169148 (29:6401)
  • [Ch] I. Chavel, Eigenvalues in Riemannian geometry, Pure and Appl. Math., vol. 115, Academic Press, Orlando, 1984. MR 768584 (86g:58140)
  • [C] J. Cheeger, Finiteness theorems for Riemannian manifolds, Amer. J. Math. 92 (1970), 61-74. MR 0263092 (41:7697)
  • [CE] J. Cheeger and D. G. Ebin, Comparison theorems in Riemannian geometry, North-Holland, Amsterdam, 1975. MR 0458335 (56:16538)
  • [D] O. C. Durumeric, A generalization of Berger's theorem on almost $ 1/4$-pinched manifolds. II, J. Differential Geom. 26 (1987), 101-139. MR 892033 (88m:53075)
  • [GG1] D. Gromoll and K. Grove, Rigidity of positively curved manifolds with large diameter, Ann. of Math. Studies, no. 102, Princeton Univ. Press, Princeton, N.J., 1981, pp. 203-207.
  • [GG2] -, One dimensional metric foliations in constant curvature spaces, Differential Geometry and Complex Analysis, a volume dedicated to H. E. Rauch (I. Chavel and H. M. Farkas, eds.), Springer-Verlag, Berlin and New York, 1985. MR 780042 (86b:53026)
  • [GG3] -, A generalization of Berger's rigidity theorem for positively curved manifolds, Ann. Sci. Ecole Norm. Sup. (4) 20 (1987), 227-239. MR 911756 (88k:53062)
  • [GG4] -, On the low dimensional metric foliations of Euclidean spheres, J. Differential Geometry (to appear). MR 950559 (89g:53052)
  • [Gv] M. Gromov, Structures metriques pour les varietes riemanniennes (J. Lafontaine and P. Pansu, eds.), Cedic/Ferdnan Nathan, Paris, 1981. MR 682063 (85e:53051)
  • [Gv2] -, Curvature, diameter and Betti numbers, Comment. Math. Helv. 56 (1981), 179-195. MR 630949 (82k:53062)
  • [GP1] K. Grove and P. Petersen, Bounding homotopy types by geometry, Ann. of Math. (2) 128 (1988), 195-206. MR 951512 (90a:53044)
  • [GP2] -, Homotopy types of positively curved manifolds with large volume, Amer. J. Math. (to appear). MR 970124 (89m:53063)
  • [GS] K. Grove and K. Shiohama, A generalized sphere theorem, Ann. of Math. (2) 106 (1977), 201-211. MR 0500705 (58:18268)
  • [P] S. Peters, Convergence of Riemannian manifolds, Compositio Math. 62 (1987), 3-16. MR 892147 (88i:53076)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C20

Retrieve articles in all journals with MSC: 53C20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0958083-0
Keywords: Curvature, volume, diameter
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society