Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Random nonlinear evolution inclusions in reflexive Banach spaces


Authors: Evgenios P. Avgerinos and Nikolaos S. Papageorgiou
Journal: Proc. Amer. Math. Soc. 104 (1988), 293-299
MSC: Primary 60H25; Secondary 35K99, 35R60, 47H20
MathSciNet review: 958086
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we present two existence results for a large class of random, nonlinear, multivalued evolution equations defined in a reflexive, separable Banach space and involving an $ m$-dissipative operator. Applications to random multivalued parabolic p.d.e.'s are presented. Our work unifies and extends earlier results of Kampé de Feriet, Gopalsamy and Bharucha-Reid, Becus and Itoh.


References [Enhancements On Off] (What's this?)

  • [1] Viorel Barbu, Nonlinear semigroups and differential equations in Banach spaces, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976. Translated from the Romanian. MR 0390843 (52 #11666)
  • [2] Georges A. Bécus, Random generalized solutions to the heat equation, J. Math. Anal. Appl. 60 (1977), no. 1, 93–102. MR 0442471 (56 #853)
  • [3] P. Benilan, Equations d'evolution dans un espace de Banach quelconque et applications, Thèse, Université de Paris XI, Orsay, 1972.
  • [4] A. T. Bharucha-Reid, Random integral equations, Academic Press, New York-London, 1972. Mathematics in Science and Engineering, Vol. 96. MR 0443086 (56 #1459)
  • [5] H. Brezis, Operateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert, Math. Studies 5, North-Holland, Amsterdam, 1973.
  • [6] Haïm Brézis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971) Academic Press, New York, 1971, pp. 101–156. MR 0394323 (52 #15126)
  • [7] Haïm Brézis, New results concerning monotone operators and nonlinear semigroups, Sûrikaisekikenkyûsho Kókyûroku 258 (1975), 2–27. Functional analysis and numerical analysis for nonlinear problems (Proc. Sympos., Res. Inst. Math. Sci., Kyoto Univ., Kyoto, 1974). MR 0493537 (58 #12532)
  • [8] C. Castaing, Un resultat de compacité lié á la propriété des ensembles Dunford-Pettis dans $ L_F^1\left( \Omega \right)$, Seminaire d'Analyse Convexe, Montpellier 1979, Exp. No. 17.
  • [9] C. Dellacherie, Ensembles analytiques. Théorèmes de séparation et applications, Séminaire de Probabilités, IX (Seconde Partie, Univ. Strasbourg, Strasbourg, années universitaires 1973/1974 et 1974/1975), Springer, Berlin, 1975, pp. 336–372. Lecture Notes in Math., Vol. 465. MR 0428306 (55 #1331)
  • [10] K. Gopalsamy and A. T. Bharucha-Reid, On a class of parabolic differential equations driven by stochastic point processes, J. Appl. Probability 12 (1975), 98–106. MR 0370763 (51 #6988)
  • [11] Shigeru Itoh, Random differential equations associated with accretive operators, J. Differential Equations 31 (1979), no. 1, 139–154. MR 524822 (80b:60085), http://dx.doi.org/10.1016/0022-0396(79)90157-8
  • [12] Joseph Kampé de Fériet, Intégrales aléatoires de l’équation de la chaleur dans une barre infinie, C. R. Acad. Sci. Paris 240 (1955), 710–712 (French). MR 0068715 (16,930c)
  • [13] J. Kampé de Fériet, Random solutions of partial differential equations, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III, University of California Press, Berkeley and Los Angeles, 1956, pp. 199–208. MR 0084927 (18,949d)
  • [14] K. Kuratowski, Topology. Vol. I, New edition, revised and augmented. Translated from the French by J. Jaworowski, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966. MR 0217751 (36 #840)
  • [15] Ségla Menou, Famille mesurable d’opérateurs maximaux monotones, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 16, A741–A744 (French, with English summary). MR 577148 (81e:47042)
  • [16] Jean-Jacques Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Differential Equations 26 (1977), no. 3, 347–374. MR 0508661 (58 #22889)
  • [17] Nikolaos S. Papageorgiou, Convergence theorems for Banach space valued integrable multifunctions, Internat. J. Math. Math. Sci. 10 (1987), no. 3, 433–442. MR 896595 (88i:28019), http://dx.doi.org/10.1155/S0161171287000516
  • [18] N. H. Pavel, Differential equations, flow invariance and applications, Research Notes in Mathematics, vol. 113, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR 774954 (86g:58027)
  • [19] M.-F. Sainte-Beuve, On the extension of von Neumann-Aumann’s theorem, J. Functional Analysis 17 (1974), 112–129. MR 0374364 (51 #10564)
  • [20] Eric Schechter, Perturbations of regularizing maximal monotone operators, Israel J. Math. 43 (1982), no. 1, 49–61. MR 728878 (85k:47110), http://dx.doi.org/10.1007/BF02761684
  • [21] T. T. Soong, Random differential equations in science and engineering, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1973. Mathematics in Science and Engineering, Vol. 103. MR 0451405 (56 #9691)
  • [22] I. I. Vrabie, Nonlinear evolution equations: existence via compactness, Semigroups, theory and applications, Vol.\ I (Trieste, 1984) Pitman Res. Notes Math. Ser., vol. 141, Longman Sci. Tech., Harlow, 1986, pp. 242–248. MR 876948 (88c:47133)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60H25, 35K99, 35R60, 47H20

Retrieve articles in all journals with MSC: 60H25, 35K99, 35R60, 47H20


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1988-0958086-6
PII: S 0002-9939(1988)0958086-6
Keywords: $ m$-dissipative, integral solution, measurable multifunction, measurable selector, nonlinear semigroup of contractions
Article copyright: © Copyright 1988 American Mathematical Society