Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Smooth extensions of Lipschitzian real functions

Author: Biagio Ricceri
Journal: Proc. Amer. Math. Soc. 104 (1988), 641-642
MSC: Primary 47H99; Secondary 54C20
MathSciNet review: 931749
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this short note we point out that any Lipschitzian real function $ f$ defined in a subset $ K$ of a Banach space $ E$, with $ \overline {{\text{span}}} {\text{(K)}} \ne {\text{E}}$, can be extended to a surjective, open and Lipschitzian real function $ g$ on $ E$ in such a way that, for every $ r \in {\mathbf{R}}$, the set $ {g^{ - 1}}(r)$ is arcwise connected. In fact, a more refined result is proved.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H99, 54C20

Retrieve articles in all journals with MSC: 47H99, 54C20

Additional Information

PII: S 0002-9939(1988)0931749-4
Article copyright: © Copyright 1988 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia