Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Smooth extensions of Lipschitzian real functions

Author: Biagio Ricceri
Journal: Proc. Amer. Math. Soc. 104 (1988), 641-642
MSC: Primary 47H99; Secondary 54C20
MathSciNet review: 931749
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this short note we point out that any Lipschitzian real function $ f$ defined in a subset $ K$ of a Banach space $ E$, with $ \overline {{\text{span}}} {\text{(K)}} \ne {\text{E}}$, can be extended to a surjective, open and Lipschitzian real function $ g$ on $ E$ in such a way that, for every $ r \in {\mathbf{R}}$, the set $ {g^{ - 1}}(r)$ is arcwise connected. In fact, a more refined result is proved.

References [Enhancements On Off] (What's this?)

  • [1] J. Czipszer and L. Gehér, Extension of functions satisfying a Lipschitz condition, Acta Math. Acad. Sci. Hungar. 6 (1955), 213–220 (English, with Russian summary). MR 0071493,
  • [2] Teck-Cheong Lim, On fixed point stability for set-valued contractive mappings with applications to generalized differential equations, J. Math. Anal. Appl. 110 (1985), no. 2, 436–441. MR 805266,
  • [3] Ernest Michael, Some extension theorems for continuous functions, Pacific J. Math. 3 (1953), 789–806. MR 0059541
  • [4] Biagio Ricceri, Une propriété topologique de l’ensemble des points fixes d’une contraction multivoque à valeurs convexes, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 81 (1987), no. 3, 283–286 (1988) (French, with English and Italian summaries). MR 999821
  • [5] Ivan Singer, Best approximation in normed linear spaces by elements of linear subspaces, Translated from the Romanian by Radu Georgescu. Die Grundlehren der mathematischen Wissenschaften, Band 171, Publishing House of the Academy of the Socialist Republic of Romania, Bucharest; Springer-Verlag, New York-Berlin, 1970. MR 0270044
  • [6] R. E. Smithson, Multifunctions, Nieuw. Arch. Wisk. (3) 20 (1972), 31–53. MR 0305338

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H99, 54C20

Retrieve articles in all journals with MSC: 47H99, 54C20

Additional Information

Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society