Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Polynomials and numerical ranges

Author: Chi-Kwong Li
Journal: Proc. Amer. Math. Soc. 104 (1988), 369-373
MSC: Primary 15A60; Secondary 15A69, 26C10
MathSciNet review: 962800
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be an $ n \times n$ complex matrix. For $ 1 \leq k \leq n$ we study the inclusion relation for the following polynomial sets related to the matrix $ A$.

(a) The classical numerical range of the $ k$th compound of the matrix $ \lambda I - A$.

(b) The $ k$th decomposable numerical range of the matrix $ \lambda I - A$.

(c) The convex hull of the set of all monic polynomials of degree $ k$ that divide the characteristic polynomial of $ A$. Moreover, we give an example showing that the set described in (a) is not convex in general. This settles a question raised by C. Johnson.

References [Enhancements On Off] (What's this?)

  • [1] Y. H. Au-Yeung and N. K. Tsing, An extension of the Hausdorff-Toeplitz theorem on the numerical range, Proc. Amer. Math. Soc. 89 (1983), 215-218. MR 712625 (85f:15021)
  • [2] K. Fan and G. Pall, Imbedding conditions for hermitian and normal matrices, Canad. J. Math. 9 (1957), 298-304. MR 0085216 (19:6e)
  • [3] C. R. Johnson, Interlacing polynomial, Proc. Amer. Math. Soc. 100 (1987), 401-404. MR 891133 (88h:15049)
  • [4] M. Marcus, Finite dimensional multilinear algebra. I and II, Marcel Dekker, 1973 and 1975.
  • [5] M. Marcus and I. Filippenko, Linear operators preserving the decomposable numerical range, Linear and Multilinear Algebra 7 (1979), 27-36. MR 523645 (80d:15028)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 15A60, 15A69, 26C10

Retrieve articles in all journals with MSC: 15A60, 15A69, 26C10

Additional Information

Keywords: Numerical range, decomposable numerical range, characteristic polynomial
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society