Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Factorizations of Lebesgue measure via convolutions

Authors: Norman Levenberg, Gaven J. Martin, Allen L. Shields and Smilka Zdravkovska
Journal: Proc. Amer. Math. Soc. 104 (1988), 419-430
MSC: Primary 28A50; Secondary 28A35
MathSciNet review: 962808
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a continuous, increasing function $ \phi :[0,\infty ) \to [0,\infty )$ with $ \phi (0) = 0$, we define the Hausdorff $ \phi $-measure of a bounded set $ E$ in the unit interval $ I = [0,1]$ as $ {H_\phi }(E) = {\lim _{\delta \to 0}}{H_\phi }{,_\delta }(E)$ where $ {H_\phi }{,_\delta }E = \inf \sum\nolimits_{i = 1}^\infty {\phi ({t_i})} $ and the infimum is taken over all countable covers of $ E$ by intervals $ {U_i}$ with $ {t_i} = \left\vert {{U_i}} \right\vert = $ length of $ {U_i} < \delta $. We show that given any such $ \phi $, there exist closed, nowhere dense sets $ {E_1},{E_2} \subset I$ with $ {H_\phi }({E_1}) = {H_\phi }({E_2}) = 0$ and $ {E_1} + {E_2} \equiv \left\{ {a + b:a \in {E_1},b \in {E_2}} \right\} = I$. The sets $ {E_i}(i = 1,2)$ are constructed as Cantor-type sets $ {E_i} = \bigcap\nolimits_{n = 1}^\infty {{E_{i,n}}} $ where $ {E_{i,n}}$ is a finite union of disjoint closed intervals. In addition, we give a simple geometric proof that the natural probability measures $ {\mu _i}$ supported on $ {E_i}$ which arise as weak limits of normalized Lebesgue measure on $ {E_{i,n}}$ have the property that the convolution $ {\mu _1}*{\mu _2}$ is Lebesgue measure on $ I$.

References [Enhancements On Off] (What's this?)

  • [E] H. G. Eggleston, Note on certain $ s$-dimensional sets, Fund. Math. 36 (1949), 40-43. MR 0031536 (11:166b)
  • [GM] C. G. Graham and O. C. McGehee, Essays in commutative harmonic analysis, Grundlehren Math. Wiss., 238, Springer-Verlag, Berlin, Heidelberg and New York, 1979. MR 550606 (81d:43001)
  • [KS] J-P. Kahane and R. Salem, Ensembles parfaits et séries trigonométriques, Actualités Sci. Indust., no. 1301, Hermann, 1963. MR 0160065 (28:3279)
  • [N] R. Nevanlinna, Analytic functions, Grundlehren Math. Wiss., 162, Springer-Verlag, Berlin, Heidelberg and New York, 1970. MR 0279280 (43:5003)
  • [T] A. Tortrat, Classes de mesures singulières sur la droite, convolutions infinies de Wintner et lois indéfiniment divisibles, J. Math. Pures Appl. 39 (1960), 231-273. MR 0119223 (22:9989)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28A50, 28A35

Retrieve articles in all journals with MSC: 28A50, 28A35

Additional Information

Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society