A NONLINEAR ERGODIC THEOREM FOR A REVERSIBLE SEMIGROUP OF LIPSCHITZIAN MAPPINGS IN A HILBERT SPACE

HAJIME ISHIHARA AND WATARU TAKAHASHI

(Communicated by John B. Conway)

ABSTRACT. Let C be a nonempty closed convex subset of a Hilbert space, S a right reversible semitopological semigroup, \(\mathcal{S} = \{ T_t : t \in S \} \) a continuous representation of S as Lipschitzian mappings on a closed convex subset C into C, and \(F(\mathcal{S}) \) the set of common fixed points of mappings \(T_t, t \in S \). Then we deal with the existence of a nonexpansive retraction \(P \) of C onto \(F(\mathcal{S}) \) such that \(PT_t = T_tP = P \) for each \(t \in S \) and \(Px \) is contained in the closure of the convex hull of \(\{ T_tx : t \in S \} \) for each \(x \in C \).

1. Introduction. Let C be a closed convex subset of a real Hilbert space \(H \) and \(T \) be a mapping of C into itself. \(T \) is said to be a Lipschitzian mapping if for each \(n \geq 1 \) there exists a positive real number \(k_n \) such that

\[
\| T^n x - T^n y \| \leq k_n \| x - y \|
\]

for all \(x, y \in C \). A Lipschitzian mapping is said to be nonexpansive if \(k_n = 1 \) for all \(n \geq 1 \) and asymptotically nonexpansive if \(\lim_{n \to \infty} k_n = 1 \), respectively. We denote by \(F(T) \) the set of fixed points of \(T \). The first nonlinear ergodic theorem for nonexpansive mappings was established in 1975 by Bâillon [1]: Let C be a closed convex subset of a Hilbert space and \(T \) be a nonexpansive mapping of C into itself. If the set \(F(T) \) is nonempty, then for each \(x \in C \), the Cesàro means

\[
S_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} T^k x
\]

converge weakly to some \(y \in F(T) \). In this case, putting \(y = Px \) for each \(x \in C \), \(P \) is a nonexpansive retraction of C onto \(F(T) \) such that \(PT = TP = P \) and \(Px \in \overline{\{ T^n x : n = 0, 1, 2, \ldots \}} \) for each \(x \in C \), where \(\overline{A} \) is the closure of the convex hull of \(A \). In [11 and 12], Takahashi proved the existence of such a retraction—"ergodic retraction"—for an amenable and a right reversible semigroup of nonexpansive mappings in a Hilbert space. On the other hand, Hirano and Takahashi [4] proved the Cesàro means for asymptotically nonexpansive mappings converge weakly to a fixed point.

In this paper, we deal with the existence of "ergodic retraction" for a right reversible semigroup of Lipschitzian mappings; that is, we prove a nonlinear ergodic theorem for such a semigroup in a Hilbert space. This theorem is a generalization...
of the result [4, 12]. Furthermore, we prove a weak convergence theorem which is similar to that of [7, 9].

2. Nonlinear ergodic theorem. Let S be a semitopological semigroup, i.e., S is a semigroup with a Hausdorff topology such that for each $a \in S$ the mappings $s \to a \cdot s$ and $s \to s \cdot a$ from S to S are continuous. Let C be a nonempty closed convex subset of a Hilbert space H. Then a family $\mathcal{T} = \{T_t: t \in S\}$ of mappings from C into itself is said to be a Lipschitzian semigroup on C if \mathcal{T} satisfies the following:

1. $T_{ts}(x) = T_t T_s(x)$ for $t, s \in S$ and $x \in C$;
2. the mapping $(s, x) \to T_s(x)$ from $S \times C$ into C is continuous when $S \times C$ has the product topology;
3. for each $s \in S$, there exists $k_s > 0$ such that $||T_s(x) - T_s(y)|| \leq k_s ||x - y||$ for $x, y \in C$.

A semitopological semigroup S is right reversible if any two closed left ideals of S have nonvoid intersection. In this case, (S, \leq) is a directed system when the binary relation “\leq” on S is defined by $a \leq b$ if and only if $\{a\} \cup S a \supseteq \{b\} \cup S b$. Let $F(\mathcal{T})$ denote the set $\{x \in C: T_s x = x$ for all $s \in S\}$ of common fixed points of mappings T_s, $s \in S$ in C (fixed point theorems for Lipschitzian semigroups were proved in [6, 3]). Then we have the following:

THEOREM 1. Let C be a closed convex subset of a real Hilbert space H and let S be a right reversible semitopological semigroup. Let $\mathcal{T} = \{T_t: t \in S\}$ be a Lipschitzian semigroup on C with $\limsup_{t} k_t \leq 1$. Then $F(\mathcal{T})$ is a closed convex subset of C.

PROOF. Closedness of $F(\mathcal{T})$ is obvious. To show convexity it is sufficient to prove that $z = (x + y)/2 \in F(\mathcal{T})$ for all $x, y \in F(\mathcal{T})$. We have

$$||T_t z - x||^2 = ||T_t z - T_t x||^2 \leq k_t^2 ||z - x||^2 = \frac{1}{4} k_t^2 ||x - y||^2$$

and

$$||T_t z - y||^2 = ||T_t z - T_t y||^2 \leq k_t^2 ||z - y||^2 = \frac{1}{4} k_t^2 ||x - y||^2.$$

Thus

$$||T_t z - z||^2 = \frac{1}{2} ||T_t z - x||^2 + \frac{1}{2} ||T_t z - y||^2 - \frac{1}{4} ||x - y||^2 \leq \frac{1}{4} (k_t^2 - 1) ||x - y||^2$$

and hence $\lim_t ||T_t z - z|| = 0$. Therefore we obtain

$$z = \lim_t T_t z = \lim_t T_t z = \lim_t T_s T_t z = T_s \lim_t T_t z = T_s z$$

for all $s \in S$.

Let $\{x_\alpha: \alpha \in A\}$ be a bounded net of a Hilbert space H and let C be a closed convex subset of H. Then we define

$$r(x) = \limsup_{\beta \to \alpha} ||x_\alpha - x|| \quad \text{and} \quad \rho = \inf \{r(x): x \in C\}.$$

It is well known that there exists a unique element $a \in C$ with $r(a) = \rho$, called the asymptotic center of $\{x_\alpha: \alpha \in A\}$ in C. A useful lemma is a result proved in [5], which we state here as:

LEMMA 1. $r^2 + ||a - x||^2 \leq r(x)^2$ for every $x \in C$.

As a consequence, we have the following.
LEMMA 2 (LIM [8]). Let \(\{y_\beta\} \) be a net of \(C \) such that \(\limsup_\beta r(y_\beta) \leq r \). Then \(y_\beta \rightarrow a \).

PROOF. By Lemma 1, we have \(r^2 + \|a - y_\beta\|^2 \leq r(y_\beta)^2 \) and hence
\[
r^2 + \limsup_\beta \|a - y_\beta\|^2 \leq \limsup_\beta r(y_\beta)^2 \leq r^2.
\]
Therefore we have \(\limsup_\beta \|a - y_\beta\|^2 = 0 \) and this implies \(y_\beta \rightarrow a \).

We also know that if \(\{x_\alpha\} \subseteq C \) and if \(\{x_\alpha\} \) converges weakly to \(y \in C \) then \(y = a \) [2, Theorem 4.2]. Let \(Q \) be the metric projection of \(H \) onto \(F(\mathcal{S}) \). Then, by Phelps [10], \(Q \) is nonexpansive. Before proving a nonlinear ergodic theorem, we prove the following crucial lemma.

LEMMA 3. Let \(C \) be a closed convex subset of a real Hilbert space \(H \) and let \(S \) be a right reversible semitopological semigroup. Let \(\mathcal{S} = \{T_t: t \in S\} \) be a Lipschitzian semigroup on \(C \) with \(\limsup_s k_s \leq 1 \). Suppose that \(F(\mathcal{S}) \neq \emptyset \). Then for each \(x \in C \), \(\{QT_s x: s \in S\} \) converges to the asymptotic center of \(\{T_s x: s \in S\} \) in \(F(\mathcal{S}) \).

PROOF. Let \(z \) be the asymptotic center of \(\{T_s x: s \in S\} \) in \(F(\mathcal{S}) \). Then, for all \(s, t \in S \) we obtain
\[
r(QT_s x) \leq \sup_{a \geq t} ||T_a x - QT_s x|| = \sup_{a \geq t} ||T_a x - QT_s x||
\]
\[
= \sup_{a \geq t} ||T_a T_s x - T_a QT_s x|| \leq \left(\sup_{a \geq t} k_a \right) ||T_a x - QT_s x||
\]
\[
\leq \left(\sup_{a \geq t} k_a \right) ||T_s x - z||
\]
and hence
\[
r(QT_s x) \leq \limsup_t k_t ||T_s x - z|| \leq ||T_s x - z||
\]
for all \(s \in S \). Therefore we have \(\limsup_s r(QT_s x) \leq \limsup_s ||T_s x - z|| \leq r \). By Lemma 2, we obtain \(QT_s x \rightarrow z \).

THEOREM 2. Let \(C \) be a closed convex subset of a Hilbert space \(H \) and let \(S \) be a right reversible semitopological semigroup. Let \(\mathcal{S} = \{T_t: t \in S\} \) be a Lipschitzian semigroup on \(C \) with \(\limsup_s k_s \leq 1 \). Suppose that
\[
F(\mathcal{S}) = \bigcap \{F(T_s): s \in S\} \neq \emptyset.
\]
Then the following are equivalent:
(a) \(\bigcap_{s \in S} \overline{co}\{T_t x: t \geq t\} \cap F(\mathcal{S}) \neq \emptyset \) for each \(x \in C \).
(b) There is a nonexpansive retraction \(P \) of \(C \) onto \(F(\mathcal{S}) \) such that \(PT_t = T_t P = P \) for every \(t \in S \) and \(Px \in \overline{co}\{T_t x: t \in S\} \) for every \(x \in C \).

PROOF. (b)⇒(a). Let \(x \in C \). Then \(Px \in F(\mathcal{S}) \). Also
\[
Px \in \bigcap_{s \in S} \overline{co}\{T_t x: t \geq s\}.
\]
In fact,
\[
Px = PT_s x \in \overline{co}\{T_t T_s x: t \in S\} \subseteq \overline{co}\{T_t x: t \geq s\}
\]
for every \(s \in S \).
(a) ⇒ (b). Let \(x \in C \) and \(f \in F(\mathcal{S}) \). Then for each \(s, t \in S \), we have
\[
\limsup_{a} ||T_{a}x - f|| \leq \sup_{a \geq ts} ||T_{a}x - f|| = \sup_{a \geq t} ||T_{as}x - f||
\]
\[
= \sup_{a \geq t} ||T_{as}x - T_{a}f|| \leq \left(\sup_{a \geq t} k_{a} \right) ||T_{s}x - f||
\]
and hence
\[
\limsup_{a} ||T_{a}x - f|| \leq \left(\limsup_{t} k_{t} \right) ||T_{s}x - f|| \leq ||T_{s}x - f||
\]
for every \(s \in S \). So \(\limsup_{s} ||T_{s}x - f|| \leq \liminf_{s} ||T_{s}x - f|| \) and hence the \(\lim_{s} ||T_{s}x - f|| \) exists. Let \(Q \) be the metric projection of \(H \) onto \(F(\mathcal{S}) \). Then by Lemma 3, \(\{QT_{s}x\} \) converges to the asymptotic center \(z \) of \(\{T_{s}x: s \in S\} \) in \(F(\mathcal{S}) \). Let \(u \in \bigcap_{s \in S} \text{co}\{T_{s}x: t \geq s\} \cap F(\mathcal{S}) \). Then, since
\[
||z - u||^{2} = ||T_{s}x - u||^{2} - ||T_{s}x - z||^{2} - 2(z - u, T_{s}x - z)
\]
for every \(s \in S \), we have
\[
||z - u||^{2} + 2\lim_{s}(z - u, T_{s}x - z) = \lim_{s} ||T_{s}x - u||^{2} - \lim_{s} ||T_{s}x - z||^{2}
\]
\[
= \lim_{s} ||T_{s}x - u||^{2} - \limsup_{s} ||T_{s}x - z||^{2}
\]
\[
= r(u)^{2} - r^{2} \geq 0.
\]
Let \(\varepsilon > 0 \). Then we have
\[
2\lim_{s}(z - u, T_{s}x - z) > -||z - u||^{2} - \varepsilon.
\]
Hence there exists \(s_{0} \in S \) such that
\[
2(z - u, T_{s}x - z) > -||z - u||^{2} - \varepsilon
\]
for every \(s \geq s_{0} \). Since \(u \in \text{co}\{T_{t}x: t \geq s_{0}\} \), we have
\[
2(z - u, u - z) \geq -||z - u||^{2} - \varepsilon.
\]
This inequality implies \(||z - u||^{2} \leq \varepsilon \). Since \(\varepsilon \) is arbitrary, we have \(z = u \). Therefore
\[
\bigcap_{s \in S} \text{co}\{T_{s}x: t \geq s\} \cap F(\mathcal{S}) = \{z\}.
\]
Set \(Px = \lim_{t} QT_{t}x \) for every \(x \in C \). Then we have \(T_{s}Px = Px \) and
\[
PT_{s}x = \lim_{t} QT_{s}T_{t}x = \lim_{t} QT_{ts}x = Px
\]
for every \(s \in S \) and \(x \in C \). From \(\{Px\} = \bigcap_{s \in S} \text{co}\{T_{s}x: t \geq s\} \cap F(\mathcal{S}) \), it is obvious that \(Px \in \text{co}\{T_{s}x: s \in S\} \) for each \(x \in C \). Since
\[
||Px - Py|| = \lim_{t} ||QT_{t}x - QT_{t}y|| \leq \limsup_{t} ||T_{t}x - T_{t}y||
\]
\[
\leq \left(\limsup_{t} k_{t} \right) ||x - y|| \leq ||x - y||
\]
for every \(x, y \in C \), it follows that \(P \) is nonexpansive.

We now turn to consider the weak convergence of \(\{T_{s}x: s \in S\} \) and obtain the results similar to these of Lau [7] and Passty [9]. We denote by \(\omega(x) \) the set of all weak limit points of subnets of the net \(\{T_{s}x: s \in S\} \). Note that if \(F(\mathcal{S}) \) is nonempty then \(\{T_{s}x: s \in S\} \) is bounded and hence \(\omega(x) \) is nonempty. We start with proving the following lemma.
Lemma 4. Let C be a closed convex subset of a Hilbert space H and let S be a right reversible semitopological semigroup. Let $\mathcal{S} = \{T_t: t \in S\}$ be a Lipschitzian semigroup on C with $\limsup_{s \to \infty} k_s \leq 1$. Suppose that $F(\mathcal{S}) \neq \emptyset$. Let $x \in C$. If $\omega(x) \subseteq F(\mathcal{S})$, then the net $\{T_s x: s \in S\}$ converges weakly to some $y \in F(\mathcal{S})$.

Proof. By Lemma 3, the net $\{QT_s x: s \in S\}$ converges strongly to some $y \in F(\mathcal{S})$. Since $\omega(x) \subseteq \bigcap_{s \in S} \overline{\text{co}}\{T_t x: t \geq s\}$, we have

$$\bigcap_{s \in S} \overline{\text{co}}\{T_t x: t \geq s\} \cap F(\mathcal{S}) \ni \omega(x) \neq \emptyset.$$

Hence, as in the proof of Theorem 2, we obtain

$$\{y\} = \bigcap_{s \in S} \overline{\text{co}}\{T_t x: t \geq s\} \cap F(\mathcal{S}).$$

Therefore we have $\{y\} = \omega(x)$.

Let C be a closed convex subset of a Hilbert space H and let $\mathcal{S} = \{T_t: t \in S\}$ be a Lipschitzian semigroup on C. A subset G of S is called a uniformly generating set of \mathcal{S} if for each $s \in S$ and $\varepsilon > 0$, there exist $g_1, g_2, \ldots, g_m \in G$ such that

$$\|T_s x - T_{g_1} g_2 \cdots g_m x\| < \varepsilon$$

for every $x \in C$.

Theorem 3. Let C be a closed convex subset of a Hilbert space H and let S be a right reversible semitopological semigroup. Let $\mathcal{S} = \{T_t: t \in S\}$ be a Lipschitzian semigroup on C with $\limsup_{s \to \infty} k_s \leq 1$. Suppose that $F(\mathcal{S}) \neq \emptyset$. Let $x \in C$. If $\lim_{s \to \infty} \|T_g x - T_s x\| = 0$ for all g in a uniformly generating set G of \mathcal{S}, then the net $\{T_s x: s \in S\}$ converges weakly to some $y \in F(\mathcal{S})$.

Proof. By Lemma 4, it suffices to show that $\omega(x) \subseteq F(\mathcal{S})$. Let $\{T_{s_\alpha} x\}$ be a subnet of $\{T_s x: s \in S\}$ converging weakly to some $y \in C$. Let $\varepsilon > 0$. Then for each $t \in S$, there exist $g_1, g_2, \ldots, g_m \in G$ such that

$$\|T_t T_{s_\alpha} x - T_{g_1} g_2 \cdots g_m T_{s_\alpha} x\| < \varepsilon$$

for every $x \in C$. Hence we have

$$\|T_{s_\alpha} x - T_t y\| \leq \|T_{s_\alpha} x - T_{g_1} g_2 \cdots g_m s_\alpha x\| + \|T_{g_1} g_2 \cdots g_m s_\alpha x - T_{s_\alpha} x\| + \|T_{s_\alpha} x - T_t y\|$$

and

$$\limsup_{\alpha} \|T_{s_\alpha} x - T_t y\| \leq \varepsilon + k_t \limsup_{\alpha} \|T_{s_\alpha} x - y\|.$$

Since ε is arbitrary, we have

$$\limsup_{\alpha} \|T_{s_\alpha} x - T_t y\| \leq k_t \limsup_{\alpha} \|T_{s_\alpha} x - y\|.$$
On the other hand, since y is the asymptotic center of $\{T_{s_t}x\}$ in C we obtain

$$\limsup_t r(T_t y) \leq \left(\limsup_t k_t \right) r(y) \leq r$$

and hence $T_t y \to y$. Therefore we have $y \in F(\mathcal{S})$.

Remark. Let γ be a positive real number and let $\mathcal{S} = \{T_t : t \in S\}$ be a Lipschitzian semigroup with $\limsup_t k_s \leq \gamma$. Then, putting $k'_s = \sup_{t \geq s} k_t$, we have

$$\|T_s x - T_s y\| \leq k_s \|x - y\| \leq \sup_{t \geq s} k_t \|x - y\| = k'_s \|x - y\|$$

and $\lim_s k'_s = \limsup_s k_s$. Hence \mathcal{S} is a Lipschitzian semigroup with $\lim_s k'_s \leq \gamma$.

References

Department of Information Science, Tokyo Institute of Technology, Oh-Okayama, Meguro-ku, Tokyo 152, Japan