Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A nonlinear ergodic theorem for a reversible semigroup of Lipschitzian mappings in a Hilbert space


Authors: Hajime Ishihara and Wataru Takahashi
Journal: Proc. Amer. Math. Soc. 104 (1988), 431-436
MSC: Primary 47H20; Secondary 47A35
DOI: https://doi.org/10.1090/S0002-9939-1988-0962809-X
MathSciNet review: 962809
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ C$ be a nonempty closed convex subset of a Hilbert space, $ S$ a right reversible semitopological semigroup, $ \mathcal{S} = \{ {T_t}:t \in S\} $ a continuous representation of $ S$ as Lipschitzian mappings on a closed convex subset $ C$ into $ C$, and $ F(\mathcal{S})$ the set of common fixed points of mappings $ {T_t},t \in S$. Then we deal with the existence of a nonexpansive retraction $ P$ of $ C$ onto $ F(\mathcal{S})$ such that $ P{T_t} = {T_t}P = P$ for each $ t \in S$ and $ {P_x}$ is contained in the closure of the convex hull of $ \left\{ {{T_t}x:t \in S} \right\}$ for each $ x \in C$.


References [Enhancements On Off] (What's this?)

  • [1] J. B. Baillon, Un théorème de type ergodique pour les contractions non linéaires dans un espace de Hilbert, C. R. Acad. Sci. Paris. Sér. A-B 280 (1975), 1511-1514. MR 0375009 (51:11205)
  • [2] K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Marcel Dekker, New York, 1984. MR 744194 (86d:58012)
  • [3] K. Goebel, W. A. Kirk and R. L. Thele, Uniformly lipschitzian families of transformations in Banach space, Canad. J. Math. 26 (1974), 1245-1256. MR 0358453 (50:10919)
  • [4] N. Hirano and W. Takahashi, Nonlinear ergodic theorems for nonexpansive mappings in Hilbert space, Kodai Math. J. 2 (1979), 11-25. MR 531784 (80j:47064)
  • [5] H. Ishihara and W. Takahashi, Fixed point theorems for uniformly lipschitzian semigroups in Hilbert spaces, J. Math. Anal. Appl. 127 (1987), 206-210. MR 904222 (88j:47076)
  • [6] H. Ishihara, Fixed point theorems for lipschitzian semigroups (to appear). MR 996128 (90f:47084)
  • [7] A. T. Lau, Semigroup of nonexpansive mappings on a Hilbert space, J. Math. Anal. Appl. 105 (1985), 514-522. MR 778484 (86m:47085)
  • [8] T. C. Lim, On asymptotic centers and fixed points of nonexpansive mappings, Canad. J. Math. 32 (1980), 421-430. MR 571935 (81k:47081)
  • [9] G. B. Passty, Construction of fixed points for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 84 (1982), 212-216. MR 637171 (83a:47065)
  • [10] R. R. Phelps, Convex sets and nearest points, Proc. Amer. Math. Soc. 8 (1957), 790-797. MR 0087897 (19:432a)
  • [11] W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc. 81 (1981), 253-256. MR 593468 (82f:47079)
  • [12] -, A nonlinear ergodic theorem for a reversible semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc. 97 (1986), 55-58. MR 831386 (88f:47051)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H20, 47A35

Retrieve articles in all journals with MSC: 47H20, 47A35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0962809-X
Keywords: Ergodic theorem, reversible semigroup, asymptotically nonexpansive mapping, fixed point
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society