Differentiability of distance functions and a proximinal property inducing convexity

Author:
J. R. Giles

Journal:
Proc. Amer. Math. Soc. **104** (1988), 458-464

MSC:
Primary 41A65; Secondary 46B20

DOI:
https://doi.org/10.1090/S0002-9939-1988-0962813-1

MathSciNet review:
962813

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In a normed linear space , consider a nonempty closed set which has the property that for some there exists a set of points , which have closest points and where the set of points is dense in . If the norm has sufficiently strong differentiability properties, then the distance function generated by has similar differentiability properties and it follows that, in some spaces, is convex.

**[1]**Edgar Asplund,*Čebyšev sets in Hilbert space*, Trans. Amer. Math. Soc.**144**(1969), 235–240. MR**0253023**, https://doi.org/10.1090/S0002-9947-1969-0253023-7**[2]**J. M. Borwein, S. P. Fitzpatrick, and J. R. Giles,*The differentiability of real functions on normed linear space using generalized subgradients*, J. Math. Anal. Appl.**128**(1987), no. 2, 512–534. MR**917385**, https://doi.org/10.1016/0022-247X(87)90203-4**[3]**J. M. Borwein and J. R. Giles,*The proximal normal formula in Banach space*, Trans. Amer. Math. Soc.**302**(1987), no. 1, 371–381 (English, with French summary). MR**887515**, https://doi.org/10.1090/S0002-9947-1987-0887515-5**[4]**A. L. Brown,*A rotund reflexive space having a subspace of codimension two with a discontinuous metric projection*, Michigan Math. J.**21**(1974), 145–151. MR**0350377****[5]**Simon Fitzpatrick,*Metric projections and the differentiability of distance functions*, Bull. Austral. Math. Soc.**22**(1980), no. 2, 291–312. MR**598702**, https://doi.org/10.1017/S0004972700006596**[6]**Simon Fitzpatrick,*Differentiation of real-valued functions and continuity of metric projections*, Proc. Amer. Math. Soc.**91**(1984), no. 4, 544–548. MR**746087**, https://doi.org/10.1090/S0002-9939-1984-0746087-9**[7]**John R. Giles,*Convex analysis with application in the differentiation of convex functions*, Research Notes in Mathematics, vol. 58, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR**650456****[8]**Victor Klee,*Dispersed Chebyshev sets and coverings by balls*, Math. Ann.**257**(1981), no. 2, 251–260. MR**634466**, https://doi.org/10.1007/BF01458288**[9]**Ka Sing Lau,*Almost Chebyshev subsets in reflexive Banach spaces*, Indiana Univ. Math. J.**27**(1978), no. 5, 791–795. MR**0510772**, https://doi.org/10.1512/iumj.1978.27.27051**[10]**L. P. Vlasov,*Čebyšev sets and approximately convex sets*, Mat. Zametki**2**(1967), 191–200 (Russian). MR**0215060****[11]**-,*Almost convex and Chebyshev sets*, Math. Notes Acad. Sci. USSR**8**(1970), 776-779.**[12]**Luděk Zajíček,*Differentiability of the distance function and points of multivaluedness of the metric projection in Banach space*, Czechoslovak Math. J.**33(108)**(1983), no. 2, 292–308. MR**699027**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
41A65,
46B20

Retrieve articles in all journals with MSC: 41A65, 46B20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0962813-1

Keywords:
Distance functions,
metric projection,
proximinal,
Chebyshev sets,
Gâteaux,
Fréchet,
uniformly Gâteaux,
uniformly Fréchet differentiable

Article copyright:
© Copyright 1988
American Mathematical Society