Interior and boundary regularity of solutions to a plasma type equation

Author:
Ying C. Kwong

Journal:
Proc. Amer. Math. Soc. **104** (1988), 472-478

MSC:
Primary 35K55; Secondary 35B65, 76X05

MathSciNet review:
962815

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we will consider a plasma type equation with homogeneous boundary condition and nonnegative initial data such that there is a finite extinction . We will show that the solution is a positive classical solution in the interior of the parabolic cylinder and it decays to zero at the boundary at a certain explicit rate.

**[1]**Philippe Bénilan and Michael G. Crandall,*The continuous dependence on 𝜙 of solutions of 𝑢_{𝑡}-Δ𝜙(𝑢)=0*, Indiana Univ. Math. J.**30**(1981), no. 2, 161–177. MR**604277**, 10.1512/iumj.1981.30.30014**[2]**James G. Berryman and Charles J. Holland,*Stability of the separable solution for fast diffusion*, Arch. Rational Mech. Anal.**74**(1980), no. 4, 379–388. MR**588035**, 10.1007/BF00249681**[3]**Gregorio Díaz and Ildefonso Diaz,*Finite extinction time for a class of nonlinear parabolic equations*, Comm. Partial Differential Equations**4**(1979), no. 11, 1213–1231. MR**546642**, 10.1080/03605307908820126**[4]**Emmanuele DiBenedetto,*Continuity of weak solutions to a general porous medium equation*, Indiana Univ. Math. J.**32**(1983), no. 1, 83–118. MR**684758**, 10.1512/iumj.1983.32.32008**[5]**Ying C. Kwong,*The asymptotic behavior of the plasma equation with homogeneous Dirichlet boundary condition and non-negative initial data*(in preparation).**[6]**-,*Asymptotic behavior of plasma type equations with non-negative initial data and homogeneous Dirichlet boundary conditions*(in preparation).**[7]**-,*Asymptotic behavior of the plasma equation*, TSR #2727, Math. Research Center, Madison, Wisconsin, 1984.**[8]**O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva,*Linear and quasilinear equations of parabolic type*, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968 (Russian). MR**0241822****[9]**Murray H. Protter and Hans F. Weinberger,*Maximum principles in differential equations*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR**0219861****[10]**E. S. Sabanina,*A class of non-linear degenerate parabolic equations*, Soviet Math. Dokl.**143**(1962), 495-498.**[11]**Paul E. Sacks,*Continuity of solutions of a singular parabolic equation*, Nonlinear Anal.**7**(1983), no. 4, 387–409. MR**696738**, 10.1016/0362-546X(83)90092-5

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
35K55,
35B65,
76X05

Retrieve articles in all journals with MSC: 35K55, 35B65, 76X05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0962815-5

Keywords:
Nonlinear degenerate diffusion equation,
finite extinction time,
regularity

Article copyright:
© Copyright 1988
American Mathematical Society