Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Wiener-Hopf operators on a finite interval and Schatten-von Neumann classes


Author: Vladimir V. Peller
Journal: Proc. Amer. Math. Soc. 104 (1988), 479-486
MSC: Primary 47B35; Secondary 47B10
DOI: https://doi.org/10.1090/S0002-9939-1988-0962816-7
MathSciNet review: 962816
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Recently R. Rochberg has characterized Hankel and Toeplitz operators on the Paley-Wiener space which belong to the Schatten-von Neumann class $ {S_p}$ for $ p \geq 1$. These operators coincide up to Fourier transform with Wiener-Hopf operators on a finite interval. Using a different approach, we extend Rochberg's result to all positive $ p$.


References [Enhancements On Off] (What's this?)

  • [1] I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. MR 0246142
  • [2] Raymond E. A. C. Paley and Norbert Wiener, Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, vol. 19, American Mathematical Society, Providence, RI, 1987. Reprint of the 1934 original. MR 1451142
  • [3] Jaak Peetre, New thoughts on Besov spaces, Mathematics Department, Duke University, Durham, N.C., 1976. Duke University Mathematics Series, No. 1. MR 0461123
  • [4] V. V. Peller, Hankel operators of class 𝔖_{𝔭} and their applications (rational approximation, Gaussian processes, the problem of majorization of operators), Mat. Sb. (N.S.) 113(155) (1980), no. 4(12), 538–581, 637 (Russian). MR 602274
  • [5] V. V. Peller, Description of Hankel operators of the class 𝔖_{𝔭} for 𝔭>0, investigation of the rate of rational approximation and other applications, Mat. Sb. (N.S.) 122(164) (1983), no. 4, 481–510 (Russian). MR 725454
  • [6] Richard Rochberg, Toeplitz and Hankel operators on the Paley-Wiener space, Integral Equations Operator Theory 10 (1987), no. 2, 187–235. MR 878246, https://doi.org/10.1007/BF01199078
  • [7] S. Ju. Rotfel′d, Remarks on the singular values of a sum of completely continuous operators, Funkcional. Anal. i Priložen 1 (1967), no. 3, 95–96 (Russian). MR 0220094
  • [8] Stephen Semmes, Trace ideal criteria for Hankel operators, and applications to Besov spaces, Integral Equations Operator Theory 7 (1984), no. 2, 241–281. MR 750221, https://doi.org/10.1007/BF01200377

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B35, 47B10

Retrieve articles in all journals with MSC: 47B35, 47B10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0962816-7
Keywords: Wiener-Hopf operator, Hankel operator, Toeplitz operator, Schattenvon Neumann classes
Article copyright: © Copyright 1988 American Mathematical Society