Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



$ L\sp 2$ boundedness of highly oscillatory integrals on product domains

Author: Elena Prestini
Journal: Proc. Amer. Math. Soc. 104 (1988), 493-497
MSC: Primary 47G05; Secondary 42B20, 42B25
MathSciNet review: 962818
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove $ {L^2}$ boundedness of the oscillatory singular integral

$\displaystyle Tf(x,y) = \iint\limits_{{D_y}} {\frac{{\operatorname{exp} (2\pi iN(y)x')}}{{x'y'}}}f(x - x',y - y')dx'dy'$

where $ N(y)$ is an arbitrary integer-valued $ {L^\infty }$ function and where nothing is assumed on the dependency upon $ y$ of the domain of integration $ {D_y}$. We also prove $ {L^2}$ boundedness of the corresponding maximal opertaor. Operators of this kind appear in a problem of a.e. convergence of double Fourier series.

References [Enhancements On Off] (What's this?)

  • [1] R. Fefferman, Singular integrals on product domains, Bull. Amer. Math. Soc. 4 (1981), 195-201. MR 598687 (83i:42014)
  • [2] R. Fefferman and E. M. Stein, Singular integrals on product spaces, Adv. in Math. 45 (1982), 117-143. MR 664621 (84d:42023)
  • [3] J. L. Journé, Calderón-Zygmund operators on product spaces, Revista Ibero-Americana 3 (1985), 55-92. MR 836284 (88d:42028)
  • [4] E. Prestini, Variants of the maximal double Hilbert transform, Trans. Amer. Math. Soc. 290 (1985), 761-771. MR 792826 (86j:42026)
  • [5] -, Singular integrals on product spaces with variable coefficients, Ark. Mat. 25 (1987), 276-287. MR 923412 (89d:42027)
  • [6] -, Uniform estimates for families of singular integrals and double Fourier series, Austral. J. Math. (Ser. A) 41 (1986), 1-12. MR 846766 (87k:42014)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47G05, 42B20, 42B25

Retrieve articles in all journals with MSC: 47G05, 42B20, 42B25

Additional Information

Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society