Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some explicit real analytic trivializations of the Teichmüller curves


Author: Clifford J. Earle
Journal: Proc. Amer. Math. Soc. 104 (1988), 503-506
MSC: Primary 32G15; Secondary 30F35
DOI: https://doi.org/10.1090/S0002-9939-1988-0962820-9
MathSciNet review: 962820
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The barycentric extension of homeomorphisms from the unit circle to the closed unit disk produces real analytic trivializations of the Teichmüller curves.


References [Enhancements On Off] (What's this?)

  • [1] L. V. Ahlfors and L. Bers, Riemann's mapping theorem for variable metrics, Ann. of Math. (2) 72 (1960), 385-404. MR 0115006 (22:5813)
  • [2] L. Bers, Fiber spaces over Teichmüller spaces, Acta Math. 130 (1973), 89-126. MR 0430318 (55:3323)
  • [3] A. Douady and C. J. Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math. 157 (1986), 23-48. MR 857678 (87j:30041)
  • [4] C. J. Earle, On quasiconformal extensions of the Beurling-Ahlfors type, Contributions to Analysis, Academic Press, New York and London, 1974, pp. 99-105. MR 0355112 (50:7589)
  • [5] C. J. Earle and R. S. Fowler, Holomorphic families of open Riemann surfaces, Math. Ann. 270 (1985), 249-273. MR 771982 (86m:32039)
  • [6] -, A new characterization of infinite dimensional Teichmüller spaces, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 10 (1985), 149-153. MR 802476 (87c:32029)
  • [7] C. J. Earle and I. Kra, On sections of some holomorphic families of closed Riemann surfaces, Acta Math. 137 (1976), 49-79. MR 0425183 (54:13140)
  • [8] F. P. Gardiner, Teichmüller theory and quadratic differentials, Wiley-Interscience, New York, 1987. MR 903027 (88m:32044)
  • [9] A. Grothendieck, Techniques de construction en géométrie analytique, Séminaire H. Cartan, 13ème année: 1960/61.
  • [10] O. Lehto, Univalent functions and Teichmüller spaces, Springer-Verlag, Berlin and New York, 1987. MR 867407 (88f:30073)
  • [11] S. Nag, The complex analytic theory of Teichmüller spaces, Wiley-Interscience, Wiley, New York, 1988. MR 927291 (89f:32040)
  • [12] P. L. Sipe, Roots of the canonical bundle of the universal Teichmüller curve and certain subgroups of the mapping class group, Math. Ann. 260 (1982), 67-92. MR 664367 (84a:32034)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32G15, 30F35

Retrieve articles in all journals with MSC: 32G15, 30F35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0962820-9
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society