Representation theorems for positive solutions of parabolic equations

Author:
Yehuda Pinchover

Journal:
Proc. Amer. Math. Soc. **104** (1988), 507-515

MSC:
Primary 35C15; Secondary 35K10

DOI:
https://doi.org/10.1090/S0002-9939-1988-0962821-0

MathSciNet review:
962821

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We determine all the minimal positive solutions of the parabolic equation in , where has time independent coefficients or has periodic coefficients in and .

**[1]**Shmuel Agmon,*On positive solutions of elliptic equations with periodic coefficients in 𝑅ⁿ, spectral results and extensions to elliptic operators on Riemannian manifolds*, Differential equations (Birmingham, Ala., 1983) North-Holland Math. Stud., vol. 92, North-Holland, Amsterdam, 1984, pp. 7–17. MR**799327**, https://doi.org/10.1016/S0304-0208(08)73672-7**[2]**D. G. Aronson,*Non-negative solutions of linear parabolic equations*, Ann. Scuola Norm. Sup. Pisa (3)**22**(1968), 607–694. MR**0435594****[3]**Avner Friedman,*On the uniqueness of the Cauchy problem for parabolic equations*, Amer. J. Math.**81**(1959), 503–511. MR**0104907**, https://doi.org/10.2307/2372754**[4]**A. Korányi and J. C. Taylor,*Minimal solutions of the heat equation and uniqueness of the positive Cauchy problem on homogeneous spaces*, Proc. Amer. Math. Soc.**94**(1985), no. 2, 273–278. MR**784178**, https://doi.org/10.1090/S0002-9939-1985-0784178-8**[5]**N. V. Krylov and M. V. Safanov,*A certain property of solutions of parabolic equations with measurable coefficients*, Math. USSR Izv.**16**(1981), 151-164.**[6]**O. A. Ladyženskja, V. A. Solonnikov and N. N. Ural'ceva,*Linear and quasilinear equations of parabolic type*, Transl. Math. Monographs, vol. 23, Amer. Math. Soc., Providence, R.I., 1968.**[7]**Minoru Murata,*Structure of positive solutions to (-Δ+𝑉)𝑢=0 in 𝑅ⁿ*, Duke Math. J.**53**(1986), no. 4, 869–943. MR**874676**, https://doi.org/10.1215/S0012-7094-86-05347-0**[8]**Yehuda Pinchover,*Sur les solutions positives d’équations elliptiques et paraboliques dans 𝑅ⁿ*, C. R. Acad. Sci. Paris Sér. I Math.**302**(1986), no. 12, 447–450 (French, with English summary). MR**838599****[9]**-,*Positive solutions of second order elliptic equations*, Ph.D. Thesis, Hebrew Univ. of Jerusalem, Jerusalem, 1986. (Hebrew)**[10]**D. V. Widder,*Positive temperatures on an infinite rod*, Trans. Amer. Math. Soc.**55**(1944), 85–95. MR**0009795**, https://doi.org/10.1090/S0002-9947-1944-0009795-2**[11]**V. V. Zhikov,*Asymptotic behavior and stabilization of solutions of second order parabolic equations with lower order terms*, Trans. Moscow Math. Soc.**2**(1984), 69-99.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
35C15,
35K10

Retrieve articles in all journals with MSC: 35C15, 35K10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0962821-0

Keywords:
Appell transform,
cap,
Cauchy problem,
exponential solution,
extreme point,
heat equation

Article copyright:
© Copyright 1988
American Mathematical Society