Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Commensurate sequences of characters


Author: A. Pełczyński
Journal: Proc. Amer. Math. Soc. 104 (1988), 525-531
MSC: Primary 43A15; Secondary 43A46, 46B15
DOI: https://doi.org/10.1090/S0002-9939-1988-0962823-4
MathSciNet review: 962823
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $ ({a_j})$ and $ ({b_j})$ are sequences of characters on compact abelian groups $ S$ and $ T$ respectively such that for every sequence of scalars $ ({\alpha _j})\vert\vert\sum {\alpha _j}{a_j}\vert{\vert _\infty } \asymp \vert\vert\sum {\alpha _j}{b_j}\vert{\vert _\infty }$ tnen for every $ 1 \leq p < \infty $ and every sequence $ ({x_j})$ of elements of an arbitrary Banach space $ X$

$\displaystyle {\int_S {\left\Vert {\sum {{x_j}{a_j}} } \right\Vert} ^p}ds \asymp {\int_T {\left\Vert {\sum {{x_j}b} } \right\Vert} ^p}dt.$

This result generalizes a result of Pisier [Pi 1] for Sidon sets. For topological Sidon sets on $ {\mathbf{R}}$ a slightly stronger result holds.

References [Enhancements On Off] (What's this?)

  • [DG 1] M. Deschamps-Godim, Sur les ensembles de Sidon topologiques, C. R. Acad. Sci. Paris 271 (1970), 1247-1249. MR 0275065 (43:823)
  • [Dg 2] -, Ensembles de Sidon topologiques, Ann. Inst. Fourier (Grenoble) 22 (1972), 51-79. MR 0340981 (49:5731)
  • [Kh] J.-P. Kahane, Some random series of functions, Cambridge Univ. Press, 1985. MR 833073 (87m:60119)
  • [M] Y. Meyer, Algebraic numbers and harmonic analysis, North-Holland, 1972. MR 0485769 (58:5579)
  • [O] W. Orlicz, Über unbedingte Konvergenz in Funktionräumen. I, II, Studia Math 4 (1933), 33-37, 41-47.
  • [Pi 1] G. Pisier, Les inégalités de Khinchine-Kahane d'après C. Borel, Séminaire sur le Géométrie des Espaces de Banach 1977-1978, Expose VII, Ecole Polytechnique, Centre de Mathématiques, 1978. MR 520209 (81c:60005)
  • [Pi 2] -, Ensembles de Sidon et processes gaussiens, C. R. Acad. Sci. Paris Sér. A 286 (1978), 671-674. MR 0511046 (58:23354)
  • [Pi 3] -, De nouvelles caractérisation des ensembles de Sidon, Math Anal. Appl., Part B, Advances in Math. Suppl. Studies 7B (1981).
  • [R] W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-227. MR 0116177 (22:6972)
  • [Z] A. Zygmund, Trigonometric series. I, Cambridge Univ. Press, 1959. MR 0107776 (21:6498)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A15, 43A46, 46B15

Retrieve articles in all journals with MSC: 43A15, 43A46, 46B15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0962823-4
Keywords: Commensurate sequences, Sidon sets
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society