A CHARACTERIZATION OF THE GENERALIZED VERONESE SURFACES

TAKEHIRO ITOH

(Communicated by David G. Ebin)

ABSTRACT. We prove that compact m-regular minimal surfaces in a sphere are generalized Veronese surfaces if the Gaussian curvature satisfies an inequality.

The Gaussian curvature of a surface is an intrinsic value. It is well known that minimal surfaces of constant curvature in a sphere are rigid [1]. These surfaces are called generalized Veronese surfaces in [3 or 5]. Now, we may conjecture that generalized Veronese surfaces can be characterized only by the Gaussian curvature.

In this paper, we will prove that this conjecture is true for m-regular minimal surfaces (m-regular means that the kth normal space N_k satisfies dim N_k > dim N_{k-1} for k = 1, 2, ..., m, where dim N_0 = 0, and 0-regular mapping means an ordinary regular one). That is, we prove the following:

THEOREM. Let M be a compact connected oriented surface minimally immersed in a unit sphere through the m-regular immersion. If its Gaussian curvature K satisfies

\[
\frac{2}{(m+2)(m+3)} \leq K \leq \frac{2}{(m+1)(m+2)}, \quad 0 \leq m,
\]

then M is a generalized Veronese surface.

1. Preliminaries. Let \(\tilde{M} \) be a \((2+\nu)\)-dimensional Riemannian manifold of constant curvature \(\tilde{c} \), and \(M \) a 2-dimensional Riemannian manifold which is immersed in \(\tilde{M} \) by the immersion \(x : M \rightarrow \tilde{M} \). Let \((e_1, e_2, \ldots, e_{2+\nu}) \) be an orthonormal frame field over \(\tilde{M} \) such that \((e_1, e_2) \) is an orthonormal frame field over \(M \). Let \(\omega_A \) and \(\omega_{AB} \) be basic and connection forms with respect to the above orthonormal frames. Then, as is well known, we have

\[
\omega_A = 0, \quad \omega_{i\alpha} = \sum_j h^0_{ij} \omega_j, \quad h^0_{ij} = h^0_{ji},
\]

\[
d\omega_i = \omega_{ij} \wedge \omega_j, \quad i \neq j,
\]

\[
d\omega_{ij} = \sum_k \omega_{ik} \wedge \omega_{kj} - \Omega_{ij}, \quad \Omega_{ij} = \frac{1}{2} \sum_{k,l} R_{ijkl} \omega_k \wedge \omega_l,
\]

\[
R_{ijkl} = \tilde{c}(\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}) + \sum_\alpha (h^{\alpha}_{ik} h^0_{jl} - h^{\alpha}_{il} h^0_{jk}),
\]
\[d\omega_{\alpha\beta} = \sum_{\gamma} \omega_{\alpha\gamma} \wedge \omega_{\gamma\beta} - \Omega_{\alpha\beta}, \quad \Omega_{\alpha\beta} = \frac{1}{2} \sum_{i,j} R_{\alpha\beta ij}\omega_i \wedge \omega_j, \]

\[R_{\alpha\beta ij} = \sum_k (h_{ik}^\alpha h_{kj}^\beta - h_{jk}^\alpha h_{ki}^\beta), \]

where we use the following convention on the ranges of indices:

\[1 \leq A, B, \ldots \leq 2 + \nu, \quad 1 \leq i, j, \ldots \leq 2, \quad 3 \leq \alpha, \beta, \ldots \leq 2 + \nu. \]

\(M \) is said to be minimal if its mean curvature \(\frac{1}{2} \sum_i h_{ii}^\alpha \epsilon_\alpha \) vanishes identically, i.e., if \(\text{trace } H_\alpha = 0 \) for all \(\alpha, H_\alpha = (h_{ii}^\alpha) \).

Let \(M_p \) be the tangent space at \(p \) to \(M \) and \(N(p) \) the normal space of \(M \) at \(p \).

We can write the (first) shape operator (the second fundamental form) \(\varphi_1 \) as

\[\varphi_1(X, Y) = \sum h_{ij}^\alpha \omega_i(X) \omega_j(Y) e_\alpha, \quad X, Y \in M_p. \]

Now we define \(h_{i_1 \ldots i_k}^\alpha, \) \(2 \leq k, \) by

\[\sum h_{i_1 \ldots i_k \omega_m}^\alpha := \sum h_{i_1 \ldots i_k}^\alpha \omega_m + \sum h_{i_1 \ldots i_{j-1}, m_{j+1} \ldots i_k}^\alpha \omega_{m_j} + \sum h_{i_1 \ldots i_k}^\beta \omega_\beta. \]

Then we can define the \(k \)th shape operator (the \(k \)th second fundamental form) \(\varphi_k \) as the multilinear mapping from \(M_p \times \cdots \times M_p \) into \(N(p) \) by

\[\varphi_k(X_1, X_2, \ldots, X_{k+1}) := \sum h_{i_1 \ldots i_{k+1} \omega_i}^\alpha(X_1) \ldots \omega_{i_{k+1}}(X_{k+1}) e_\alpha, \]

where \(X_j \in M_p, j = 1, 2, \ldots, k + 1. \) We define the \(k \)th normal space \(N_k(p) \) of \(M \) at \(p \) as

\[N_k(p) := \text{Span}\{\varphi_1(X_1, X_2), \varphi_2(X_1, X_2, X_3), \ldots, \varphi_k(X_1, \ldots, X_{k+1})\}, \]

where \(X_j \in M_p, j = 1, 2, \ldots, k + 1. \) The immersion is said to be \(m \)-regular if \(\dim N_k(p) > \dim N_{k-1}(p) \) at each point \(p \in M \) for all \(k = 1, 2, \ldots, m, \) where \(\dim N_0(p) = 0. \) A 0-regular mapping means an ordinary one, so an immersion is 0-regular.

2. Compact minimal positive curvature surfaces in a space form. Let \(M \) be a compact connected oriented surface which is minimally immersed in a \((2 + \nu)\)-dimensional Riemannian manifold \(M \) by the \(m \)-regular immersion. We suppose that the Gaussian curvature \(K \) of \(M \) is positive. Let \(U \) be a neighborhood of a point \(p \in M \) in which there exist isothermal coordinates \((u, v)\) and a frame field \((e_1, e_2)\) such that

\[(2.1) \quad ds^2 = E(du^2 + dv^2), \quad \omega_1 = \sqrt{E} du, \quad \omega_2 = \sqrt{E} dv, \]

where \(ds \) is the line element of \(M \) and \(E = E(u, v) \) is a positive function on \(U. \)

Since \(M \) is minimal in \(U, \) we may write

\[\omega_1 = f_\alpha \omega_1 + g_\alpha \omega_2, \quad \omega_2 = g_\alpha \omega_1 - f_\alpha \omega_2, \quad 2 < \alpha, \]

where \(f_\alpha \) and \(g_\alpha \) are functions on \(U. \) Then, using the structure equations, we easily see that the complex valued function

\[(2.2) \quad w_1(z, \bar{z}) = E^2(|G_1|^2 - |F_1|^2) + 2iE^2(G_1, F_1) \]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
is holomorphic in $z = u + iv$, where $F_1 = \sum f_\alpha e_\alpha$ and $G_1 = \sum g_\alpha e_\alpha$. For a tangent vector $X = \cos \theta \cdot e_1 + \sin \theta \cdot e_2$ of M_p, we have the mapping φ_1 from M_p into $N(p)$ as follows:

\begin{equation}
(2.3) \quad \varphi_1(X) := \varphi_1(X, X) = \cos 2\theta \cdot F_1 + \sin 2\theta \cdot G_1,
\end{equation}

where $F_1 = \sum f_\alpha e_\alpha = \sum h_{11}^2 e_\alpha$ and $G_1 = \sum g_\alpha e_\alpha = \sum h_{12}^2 e_\alpha$. Then we have

Lemma 1. At each point p of M, the image of the tangent unit circle S^1_p under the mapping φ_1 is a point or a circle according as $\dim N_1(p) = 0$ or $\neq 0$, where $S^1_p = \{X \in M_p \mid |X| = 1\}$.

Proof. We easily see that $|w_1(z, \bar{z})|^2/E^4$ is a differentiable function on M. Since M is compact, $|w_1(z, \bar{z})|^2/E^4$ takes the maximum A at some point p_0 of M. If $A > 0$, then there exists a neighborhood U of p_0 in which $|w_1(z, \bar{z})|^2/E^4 > 0$, and there exist isothermal coordinates (u, v) and a frame field satisfying (2.1). Then from (2.2) we have

\begin{equation}
(2.4) \quad \Delta \log(|w_1(z, \bar{z})|^2/E^4) = -4\Delta \log E = 8EK, \quad \Delta = \partial^2/\partial u^2 + \partial^2/\partial v^2,
\end{equation}

because K is given by $K = -(1/2E)\Delta \log E$. It follows from $K > 0$ and (2.4) that the function $\tilde{w}_1 = \log(|w_1(z, \bar{z})|^2/E^4)$ is a subharmonic function on M. Since \tilde{w}_1 takes the maximum $\log A$ at $p_0 \in U$, it must be constant $\log A$ on U. Furthermore, since M is connected, \tilde{w}_1 is constant on M. It follows from this fact and (2.4) that K is identically zero on M, which contradicts $K > 0$. Thus the function $w_1(z, \bar{z}) = 0$, so F_1 and G_1 are orthonormal vectors in $N_1(p)$. Hence, we have proved our assertion.

If $m = 1$, that is, $\dim N_1(p) \neq 0$ at each point $p \in M$, then, by Lemma 1, we choose a neighborhood U of p in which there exist isothermal coordinates (u, v) and frame fields satisfying (2.1) and

\begin{equation}
(2.5) \quad \omega_{13} = k_1 \omega_1 = \omega_{24}, \quad \omega_{1\beta} = \omega_{2\beta} = 0,
\omega_{23} = -k_1 \omega_2 = -\omega_{14}, \quad 4 < \beta,
\end{equation}

where k_1 is a positive differentiable function on M. Using the structure equations, from (2.5) we have

\begin{equation}
(2.6) \quad \omega_{34} = 2\omega_{12} - (\log k_1)\omega_1 + (\log k_1)\omega_2,
\end{equation}

where $d(\log k_1) = \sum_j (\log k_1)\omega_j$. Furthermore, by (2.5) we may put

\begin{equation}
(2.7) \quad k_1 \omega_{3\beta} = f_\beta \omega_1 + g_\beta \omega_2, \quad k_1 \omega_{4\beta} = g_\beta \omega_1 - f_\beta \omega_2, \quad 4 < \beta,
\end{equation}

and define two normal vectors $F_2 = \sum f_\beta e_\beta$ and $G_2 = \sum g_\beta e_\beta$ on U. Then, from φ_2 we have the mapping $\tilde{\varphi}_2$ from M_p into $N_2(p)$ as

\begin{equation}
(2.8) \quad \tilde{\varphi}_2(X) := \varphi_2(X, X, X) = \cos 3\theta \cdot F_2 + \sin 3\theta \cdot G_2,
\end{equation}

for $X = \cos \theta \cdot e_1 + \sin \theta \cdot e_2 \in M_p, p \in U$. Using the structure equations, by (2.5) and (2.7) the complex valued function

\begin{equation}
\omega(z, \bar{z}) = E^3(|G_2|^2 - |F_2|^2) + 2iE^3\langle F_2, G_2 \rangle
\end{equation}

is holomorphic in z. Furthermore, $|\omega(z, \bar{z})|^2/E^6$ is a differentiable function on M. Hence, in the same way as Lemma 1, we can prove the following
Lemma 2. If \(m = 1 \), then, at each point \(p \in M \), the image of a unit tangent circle \(S^1_p \) under \(\varphi_2 \) is a point or a circle according as \(\dim N_2(p) - \dim N_1(p) = 0 \) or \(\neq 0 \).

If \(m = 2 \), that is, \(\dim N_2(p) - \dim N_1(p) > 0 \) at each point \(p \in M \), then, by Lemma 1 and Lemma 2, we choose a neighborhood \(U \) of \(p \) in which there exist isothermal coordinates \((u,v) \) and frame fields satisfying (2.1), (2.5) and

\[
\begin{align*}
k_1\omega_{35} &= k_2\omega_1 = k_1\omega_{46}, & \omega_3\gamma &= \omega_4\gamma = 0, \\
k_1\omega_{36} &= k_2\omega_2 = -k_1\omega_{45}, & 6 < \gamma,
\end{align*}
\]

where \(k_2 \) is a positive differentiable function on \(M \). Let \(d(\log k_2) = \sum (\log k_2) j \omega_j \); then from (2.9) we have

\[
\omega_{56} = 3\omega_{12} - (\log k_2) \omega_1 + (\log k_2) \omega_2
\]

and we may write

\[
k_2\omega_{5\gamma} = f_7\omega_1 + g_\gamma\omega_2, \quad k_2\omega_{6\gamma} = g_\gamma\omega_1 - f_7\omega_2, \quad 6 < \gamma.
\]

From the third shape operator \(\varphi_3 \) we have the mapping \(\tilde{\varphi}_3 \) from \(M_p \) into \(N_3(p) \) as

\[
\tilde{\varphi}_3(X) := \varphi_3(X,X,X) = \cos 4\theta \cdot F_3 + \sin 4\theta \cdot G_3,
\]

for \(X = \cos \theta \cdot e_1 + \sin \theta \cdot e_2 \in M_p, p \in M \), where \(F_3 = \sum f_7 e_7 \) and \(G_3 = \sum g_\gamma e_\gamma \) are normal vector fields on \(U \). Furthermore, from (2.9), (2.10) and (2.11) we see that the complex function

\[
w_3(z, \overline{z}) = E^4(|G_3|^2 - |F_3|^2) + 2iE^4(F_3, G_3)
\]

is holomorphic in \(z \).

Continuing this way, we have the following:

Theorem 1. Let \(M \) be a connected compact oriented surface of positive curvature minimally immersed in a \((2 + \nu) \)-dimensional space form \(\tilde{M} \) of constant curvature \(c \). If the immersion is \(m \)-regular, then, at each point on \(M \), the image of a unit tangent circle \(S^1_p \) under the mapping \(\tilde{\varphi}_n \) (the \(n \)th shape operator) is a circle for any \(n = 1, 2, \ldots, m \), and the image of \(S^1_p \) under \(\tilde{\varphi}_{m+1} \) is a point or a circle according as \(\dim N_{m+1}(p) - \dim N_m(p) = 0 \) or \(\neq 0 \).

Proof. For \(n = 1, 2 \), we have proved our assertion in Lemma 1 and Lemma 2. By induction on \(n \), we will prove our assertion. So we assume that the above assertion holds for all \(t \leq n-1 < m, 3 \leq n \). Then we can choose a neighborhood \(U \) of a point \(p \in M \) in which there exist isothermal coordinates \((u,v) \) and frame fields satisfying (2.1) and

\[
(2.12)_{n-1} \quad \begin{cases}
k_{t-1} \omega_{\alpha_1 \beta_1} = k_t \omega_1 = k_{t-1} \omega_{\alpha_2 \beta_2}, & \omega_{\alpha_1 \gamma} = \omega_{\alpha_2 \gamma} = 0, \\
k_{t-1} \omega_{\alpha_1 \beta_2} = k_t \omega_2 = -k_{t-1} \omega_{\alpha_2 \beta_1}, & 2t + 2 < \gamma, \\
\alpha_1 = 2t - 1, & \alpha_2 = 2t, \\
\beta_1 = 2t + 1, & \beta_2 = 2t + 2,
\end{cases}
\]

where \(k_0 = 1 \) and \(k_t \) (\(1 \leq t \leq n-1 \)) are positive differentiable functions on \(M \). Using the structure equations, from (2.12)\(_{n-1}\) we have

\[
(2.13)_{n-1} \quad \omega_{\beta_1 \beta_2} = (t + 1)\omega_{12} - (\log k_t) \omega_1 + (\log k_t) \omega_2,
\]
where $\beta_1 = 2t + 1$, $\beta_2 = 2t + 2$, and $d(\log k_t) = \sum (\log k_t)_j \omega_j$ for $t = 1, 2, \ldots, n - 1$. Furthermore, from $(2.12)_{n-1}$ we may write

$$
k_{n-1} \omega_{a_1} \gamma = f_\gamma \omega_1 + g_\gamma \omega_2, \quad a_1 = 2n - 1, \\
k_{n-1} \omega_{a_2} \gamma = g_\gamma \omega_1 - f_\gamma \omega_2, \quad a_2 = 2n, \quad 2n < \gamma.
$$

From the nth shape operator φ_n we have the mapping $\tilde{\varphi}_n$ from M_p into $N_n(p)$ as $\tilde{\varphi}_n(X) := \varphi_n(X, \ldots, X)$ for $X \in M_p$. For a unit tangent vector $X = \cos \theta \cdot e_1 + \sin \theta \cdot e_2$ at p to M, we have

$$
\tilde{\varphi}_n(X) = \cos(n + 1) \theta \cdot F_n + \sin(n + 1) \theta \cdot G_n,
$$

where $F_n = \sum f_\gamma e_\gamma$ and $G_n = \sum g_\gamma e_\gamma$ are normal vector fields on U. Using the structure equations, from $(2.12)_{n-1}$ and $(2.13)_{n-1}$ we see that the complex valued function

$$
w_n(z, \bar{z}) = \frac{2}{(2n+2)} |G_n|^2 - |F_n|^2 + 4 \langle G_n, F_n \rangle
$$

is holomorphic in $z = u + iv$. As stated above, we easily see that

$$
\frac{|w_n(z, \bar{z})|^2}{E^{2n+2}} = |G_n|^2 - |F_n|^2 + 4 \langle G_n, F_n \rangle
$$

is a differentiable function on M. Hence, in the same way as in the proof of Lemma 1, at each point $p \in M$, the image of S^n_p under $\tilde{\varphi}_n$ is a circle, because $n \leq m$. Furthermore, when $n = m + 1$, by the above consideration we see that the image of S^n_p under $\tilde{\varphi}_{m+1}$ is a point or a circle according as $\dim N_{m+1}(p) - \dim N_m(p) = 0$ or $\neq 0$. Thus we have proved our assertion.

Now we can prove the following:

THEOREM 2. Let M be a connected compact oriented surface minimally im-

mersed in a $(2 + \nu)$-dimensional space form M of constant curvature c. If the

immersion is m-regular and the Gaussian curvature K satisfies the inequality

$$
\frac{2c}{(m+2)(m+3)} \leq K \leq \frac{2c}{(m+1)(m+2)},
$$

then M is of constant curvature $2c/((m+2)(m+3))$ or $2c/((m+1)(m+2))$.

PROOF. First we consider the case that $\dim N_{m+1}(p) = \dim N_m(p)$ at each

point $p \in M$, so $k_{m+1}^2 = 0$ on M by Theorem 1. Using the structure equations,

from (2.5), (2.12) and (2.13) we have

$$
\Delta \log k_t = E\{(t+1)K - 2k_t^2/k_{t-1}^2 + 2k_{t+1}^2/k_t^2\}, \quad t = 1, 2, \ldots, m - 1, \\
\Delta \log k_m = E\{(m+1)K - 2k_m^2/k_{m-1}^2\}, \quad \Delta = \partial^2/\partial u^2 + \partial^2/\partial v^2,
$$

which imply

$$
\Delta \log(k_1 \cdot k_2 \cdots k_m) = E \left\{ \frac{m(m+3)}{2} K - 2k_1^2 \right\} = E \left\{ \frac{(m+1)(m+2)}{2} K - c \right\},
$$

because $K = c - 2k_1^2$. Since $K \leq 2c/((m+1)(m+2))$, (2.16) implies that the

function $\log(k_1 \cdot \cdots \cdot k_m)$ is a superharmonic function on M. Since M is compact,

$\log(k_1 \cdot \cdots \cdot k_m)$ must be constant on M, which, together with (2.16), implies $K = 2c/((m+1)(m+2))$ identically on M.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Next, we consider the case that there exists a point $p_0 \in M$ such that $\dim N_{m+1}(p_0) > \dim N_m(p_0)$. We choose a neighborhood U of p_0 in which there exist isothermal coordinates (u, v) and frame fields satisfying (2.1) and (2.12)$_{m+1}$. We must remark that k^2_{m+1} is a differentiable function on M and vanishes at a point where $\dim N_{m+1}(p) = \dim N_m(p)$. On U we can consider the image of S^1_p under the mapping $\tilde{\varphi}_{m+2}$. For the same reason as above, it is a point or a circle according as $\dim N_{m+2}(p) - \dim N_{m+1}(p) = 0$ or $\neq 0$. Using the structure equations, from (2.5), (2.12)$_{m+1}$ and (2.13)$_{m+1}$ we have

\begin{equation}
(2.17) \quad \Delta \log k_t = E\{(t + 1)K - 2k^2_t/k^2_{t-1} + 2k^2_{t+1}/k^2_t\}, \quad t = 1, \ldots, m+1,
\end{equation}

where $k^2_{m+2} = \sum_{2(m+2)<\gamma} f^2_\gamma$ is the square of the radius of the image of S^1_p. From (2.16) we have

\begin{equation}
(2.18) \quad \Delta(\log k_1 \cdots k_{m+1}) = E\left\{\frac{(m+1)(m+4)}{2}K - 2k^2_1 + 2k^2_{m+2}/k^2_{m+1}\right\}
\end{equation}

which, together with $K \geq 2c/((m+2)(m+3))$, implies $\log(k_1 \cdots k_{m+1})$ is a subharmonic function on U. Here we may assume that the differentiable function $k^2_1 \cdots k^2_{m+1}$ takes the maximum value at p_0. Then $\log(k_1 \cdots k_{m+1})$ takes its maximum at p_0 in U, so it must be constant on U. Hence (2.18) implies that $K = 2c/((m+2)(m+3))$ on U. Since M is connected, $K = 2c/((m+2)(m+3))$ on M. Thus we have proved our assertion.

We see that our main theorem is obtained as a corollary of the results in [3] and the above Theorem 2.

REFERENCES

Institute of Mathematics, University of Tsukuba, Tsukuba-shi, Ibaraki, 305 Japan