THE ISOMETRY GROUPS OF COMPACT MANIFOLDS WITH NEGATIVE RICCI CURVATURE

ATSUSHI KATSUDA

(Communicated by David G. Ebin)

ABSTRACT. We estimate the order of the isometry groups of compact manifolds with negative Ricci curvature in terms of geometric quantities: the sectional curvature, the Ricci curvature, the diameter, and the injectivity radius.

1. Introduction. Let M be a compact Riemannian manifold with negative Ricci curvature. Bochner [2] showed that there is no nontrivial Killing vector field on M and therefore the isometry group I(M) of M has finite order. The purpose of this note is to estimate the order of I(M). In this direction, when M is nonpositively curved, Huber [6], Im Hof [7] and Maeda [8] obtained similar results. Moreover, there are some generalizations by Yamaguchi [9], Adachi and Sunada [1].

Let K_M be the sectional curvature, Ric_M the Ricci curvature, D_M the diameter, and i_M the injectivity radius of M, respectively.

THEOREM. Given an integer n and positive constants Λ, c, D, i, there is a constant N depending only on n, Λ, c, D, i such that if a compact connected n-dimensional Riemannian manifold M satisfies $|K_M| < \Lambda^2$, $\text{Ric}_M \leq -c$, $D_M \leq D$, $i_M \geq i$, then the order of the isometry group I(M) is smaller than N.

It should be noted that the constant N depends very essentially on the bound of the sectional curvature and it is an interesting problem to decide whether or not this dependence is essential.

ACKNOWLEDGEMENT. The author is very grateful to A. Morimoto, T. Sunada and T. Adachi for valuable advice and also to the referee and U. Abresch for useful comments. The proof of the lemma is due to Abresch and greatly simplifies the original argument of the author.

2. Proof. The following Lemma is crucial in the proof of the Theorem. It is a discrete version of Bochner’s classical argument for the nonexistence of Killing vector fields. Let $d(\cdot, \cdot)$ be the distance on M induced by the Riemannian metric. For the sake of brevity, we normalize $\Lambda = 1$.

LEMMA. If an isometry ϕ of M satisfies $d(p, \phi(p)) < \min(i, \pi/4, c/(n - 1))$ for all p in M, then ϕ is the identity map.

PROOF. Let p be the point such that $d(p, \phi(p))$ is maximal and let $\gamma: [0, t_0] \to M$ be the unit speed geodesic from p to $\phi(p)$. Note that γ is an axis of ϕ. Let $H_0 = \exp_p(U)$ for a sufficiently small neighborhood U of 0 in the normal space of γ.
at p. Now use Gromov’s approach to the Rauch comparison theorem [5, 8.9]. Let H_t be equidistant local hypersurfaces along γ, $S = S_t$ the second fundamental form of H_t at $\gamma(t)$ in the direction $-\dot{\gamma}(t)$, $S_0 = 0$. Then, since ϕ is an isometry, $\phi(H_0)$ is totally geodesic at $\phi(p)$, touches H_{t_0} at $\phi(p)$, but lies completely on the “left” of H_{t_0} because ϕ has maximal displacement at p. This is impossible certainly if

\[(*) \quad \text{tr } S_{t_0} > 0. \]

Now $S' + S^2 + R_\gamma = 0$, $R_\gamma T = R(T, \dot{\gamma})\dot{\gamma}$, and the assumption $-1 \leq K_M \leq 1$ yield immediately

\[-\tan t \leq S \leq \tanh t. \]

Thus, $\text{tr } S^2 \leq (n - 1)\tan^2 t$, and ($*$) holds for

\[(n - 1)\tan^2 t_0 < (n - 1)\tan t_0 < c, \]

if $1 - n \leq \text{Ric}_M \leq -c$ and $t_0 < \pi/4$. Q.E.D.

Now we prove the Theorem. The method is fairly standard by now (cf. [8]). As usual, $B_r(p)$ will denote the closed ball of radius r with center p.

Take $a < \min(i/4, \pi/16, c/4(n-1))$ and $\{p_i\}_{i=1}^l$ such that $M \subset \bigcup_{i=1}^l B_a(p_i)$. We define the map F from $I(M)$ to the symmetric group S_l of degree l by $F(\phi): i \mapsto j(i)$, where $j(i)$ is the smallest j such that $\phi(p_i) \in B_a(p_j)$. We will show F is injective. For this assume $F(\phi) = F(\psi) = j(\cdot)$. Take an arbitrary point p and say $p \in B_a(p_i)$. Then,

\[d(\phi(p), \psi(p)) \leq d(\phi(p), \phi(p_i)) + d(\phi(p_i), \phi(p_{j(i)})) + d(\phi(p_{j(i)}), \psi(p_i)) + d(\psi(p_i), \psi(p)) \leq 4a. \]

Thus the above Lemma shows $\phi = \psi$.

On the other hand, by the volume comparison theorem [5], l is smaller than $b(D)/b(a/2)$ where $b(t)$ is the volume of the closed ball of radius t in the space with constant curvature -1. Hence the order of $I(M)$ is smaller than that of S_l. Q.E.D.

REFERENCES

DEPARTMENT OF MATHEMATICS, OKAYAMA UNIVERSITY, OKAYAMA 700, JAPAN