Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Hunt's hypothesis for Lévy processes


Author: Murali Rao
Journal: Proc. Amer. Math. Soc. 104 (1988), 621-624
MSC: Primary 60J45; Secondary 60J30
MathSciNet review: 962838
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note, a general condition is given implying the validity of Hunt's hypothesis $ ({\text{H}})$ for Levy processes in $ d$-dimensions.


References [Enhancements On Off] (What's this?)

  • [1] R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Pure and Applied Mathematics, Vol. 29, Academic Press, New York-London, 1968. MR 0264757
  • [2] William Feller, An introduction to probability theory and its applications. Vol. II, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 0210154
  • [3] G. Forst, Harmonic spaces associated with non-symmetric translation invariant Dirichlet forms, Invent. Math. 34 (1976), no. 2, 135–150. MR 0419803
  • [4] Joseph Glover and Murali Rao, Hunt’s hypothesis (H) and Getoor’s conjecture, Ann. Probab. 14 (1986), no. 3, 1085–1087. MR 841609
  • [5] Mamoru Kanda, Two theorems on capacity for Markov processes with stationary independent increments, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 35 (1976), no. 2, 159–165. MR 0405594
  • [6] Mamoru Kanda, Characterization of semipolar sets for processes with stationary independent increments, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 42 (1978), no. 2, 141–154. MR 0483039
  • [7] Harry Kesten, Hitting probabilities of single points for processes with stationary independent increments, Memoirs of the American Mathematical Society, No. 93, American Mathematical Society, Providence, R.I., 1969. MR 0272059
  • [8] S. C. Port and C. J. Stone, The asymmetric Cauchy processes on the line, Ann. Math. Statist 40 (1969), 137–143. MR 0235619
  • [9] Murali Rao, On polar sets for Lévy processes, J. London Math. Soc. (2) 35 (1987), no. 3, 569–576. MR 889378, 10.1112/jlms/s2-35.3.569

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60J45, 60J30

Retrieve articles in all journals with MSC: 60J45, 60J30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0962838-6
Keywords: Levy processes, polar sets, excessive functions
Article copyright: © Copyright 1988 American Mathematical Society