Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Vector-valued stochastic processes. V. Optional and predictable variation of stochastic measures and stochastic processes

Author: Nicolae Dinculeanu
Journal: Proc. Amer. Math. Soc. 104 (1988), 625-631
MSC: Primary 60G07; Secondary 60G57
MathSciNet review: 962839
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mu $ be a stochastic measure, with values in a Banach space $ E$, with finite variation $ \vert\mu \vert$. If $ \mu $ is optional (resp. predictable), then $ \vert\mu \vert$ is also optional (resp. predictable) provided $ E$ is separable, or the dual of a separable space, or has the Radon-Nikodym property.

Let $ A$ be a right continuous stochastic process with values in $ E$, with finite variation $ \vert A\vert$. If $ A$ is measurable (resp. optional, predictable), then $ \vert A\vert$, the continuous part $ \vert A{\vert^c}$ and the discrete part $ \vert A{\vert^d}$ have the same property.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60G07, 60G57

Retrieve articles in all journals with MSC: 60G07, 60G57

Additional Information

PII: S 0002-9939(1988)0962839-8
Keywords: Stochastic processes, stochastic measures, finite variation, measurable, optional, predictable, Banach space
Article copyright: © Copyright 1988 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia