Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Concerning periodic points in mappings of continua


Author: W. T. Ingram
Journal: Proc. Amer. Math. Soc. 104 (1988), 643-649
MSC: Primary 54F20; Secondary 54H20, 58F20
DOI: https://doi.org/10.1090/S0002-9939-1988-0962842-8
MathSciNet review: 962842
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we present some conditions which are sufficient for a mapping to have periodic points.

Theorem. If $ f$ is a mapping of the space $ X$ into $ X$ and there exist subcontinua $ H$ and $ K$ of $ X$ such that (1) every subcontinuum of $ K$ has the fixed point property, (2) $ f[K]$ and every subcontinuum of $ f[H]$ are in class $ W$, (3) $ f[K]$ contains $ H$, (4) $ f[H]$ contains $ H \cup K$, and (5) if $ n$ is a positive integer such that $ {(f\vert H)^{ - n}}(K)$ intersects $ K$, then $ n = 2$, then $ K$ contains periodic points of $ f$ of every period greater than 1.

Also included is a fixed point lemma:

Lemma. Suppose $ f$ is a mapping of the space $ X$ into $ X$ and $ K$ is a subcontinuum of $ X$ such that $ f[K]$ contains $ K$. If (1) every subcontinuum of $ K$ has the fixed point property, and (2) every subcontinuum of $ f[K]$ is in class $ W$, then there is a point $ x$ of $ K$ such that $ f(x) = x$.

Further we show that: If $ f$ is a mapping of $ [0,1]$ into $ [0,1]$ and $ f$ has a periodic point which is not a power of 2, then $ \lim \{ [0,1],f\}$ contains an indecomposable continuum. Moreover, for each positive integer $ i$, there is a mapping of $ [0,1]$ into $ [0,1]$ with a periodic point of period $ {2^i}$ and having a hereditarily decomposable inverse limit.


References [Enhancements On Off] (What's this?)

  • [1] James F. Davis, Atriodic acyclic continua and class $ W$, Proc. Amer. Math. Soc. 90 (1984), 477-482. MR 728372 (85f:54067)
  • [2] James F. Davis and W. T. Ingram, An atriodic tree-like continuum with positive span which admits a monotone mapping to a chainable continuum, Fund. Math. (to appear). MR 970910 (90g:54027)
  • [3] Robert L. Devaney, An introduction to chaotic dynamical systems, Benjamin/Cummings, Menlo Park, Calif., 1986. MR 811850 (87e:58142)
  • [4] O. H. Hamilton, A fixed point theorem for pseudo arcs and certain other metric continua, Proc. Amer. Math. Soc. 2 (1951), 173-174. MR 0039993 (12:627f)
  • [5] W. T. Ingram, An atriodic tree-like continuum with positive span, Fund. Math. 77 (1972), 99-107. MR 0365516 (51:1768)
  • [6] Daniel P. Kuykendall, Irreducibility and indecomposability in inverse limits, Fund. Math. 84 (1973), 265-270. MR 0326684 (48:5027)
  • [7] Tien-Yien Li and James A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), 985-992. MR 0385028 (52:5898)
  • [8] Wayne Lewis, Periodic homeomorphisms of chainable continua, Fund. Math. 117 (1983), 81-84. MR 712216 (85c:54065)
  • [9] Jack McBryde, Inverse limits on arcs using certain logistic maps as bonding maps, Master's Thesis, University of Houston, 1987.
  • [10] Piotr Minc, A fixed point theorem for weakly chainable plane continua, preprint. MR 968887 (90d:54067)
  • [11] Sam B. Nadler, Examples of fixed point free maps from cells onto larger cells and spheres, Rocky Mountain J. Math. 11 (1981), 319-325. MR 619679 (82f:54077)
  • [12] David M. Read, Confluent and related mappings, Colloq. Math. 29 (1974), 233-239. MR 0367903 (51:4145)
  • [13] Helga Schirmer, A topologist's view of Sharkovsky's Theorem, Houston J. Math. 11 (1985), 385-395. MR 808654 (87e:58178)
  • [14] Michel Smith and Sam Young, Periodic homeomorphisms on $ T$-like continua, Fund. Math. 104 (1979), 221-224. MR 559176 (81a:54038)
  • [15] R. H. Sorgenfrey, Concerning triodic continua, Amer. J. Math. 66 (1944), 439-460. MR 0010968 (6:96d)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F20, 54H20, 58F20

Retrieve articles in all journals with MSC: 54F20, 54H20, 58F20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0962842-8
Keywords: Periodic point, fixed point property, class $ W$, indecomposable continuum, inverse limit
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society