Pseudoprime -ideals in a class of -rings

Author:
Suzanne Larson

Journal:
Proc. Amer. Math. Soc. **104** (1988), 685-692

MSC:
Primary 06F25; Secondary 16A12

MathSciNet review:
964843

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In a commutative -ring, an -ideal is called pseudoprime if implies or , and is called square dominated if for every for some such that . Several characterizations of pseudoprime -ideals are given in the class of commutative semiprime -rings in which minimal prime -ideals are square dominated. It is shown that the hypothesis imposed on the -rings, that minimal prime -ideals are square dominated, cannot be omitted or generalized.

**[1]**Eleanor R. Aron and Anthony W. Hager,*Convex vector lattices and 𝑙-algebras*, Topology Appl.**12**(1981), no. 1, 1–10. MR**600458**, 10.1016/0166-8641(81)90024-9**[2]**Alain Bigard, Klaus Keimel, and Samuel Wolfenstein,*Groupes et anneaux réticulés*, Lecture Notes in Mathematics, Vol. 608, Springer-Verlag, Berlin-New York, 1977 (French). MR**0552653****[3]**Leonard Gillman and Meyer Jerison,*Rings of continuous functions*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR**0116199****[4]**Leonard Gillman and Carl W. Kohls,*Convex and pseudoprime ideals in rings of continuous functions*, Math. Z.**72**(1959/1960), 399–409. MR**0114115****[5]**Melvin Henriksen,*Semiprime ideals of 𝑓-rings*, Symposia Mathematica, Vol. XXI (Convegno sulle Misure su Gruppi e su Spazi Vettoriali, Convegno sui Gruppi e Anelli Ordinati, INDAM, Rome, 1975), Academic Press, London, 1977, pp. 401–409. MR**0480256****[6]**M. Henriksen and F. A. Smith,*Sums of 𝑧-ideals and semiprime ideals*, General topology and its relations to modern analysis and algebra, V (Prague, 1981) Sigma Ser. Pure Math., vol. 3, Heldermann, Berlin, 1983, pp. 272–278. MR**698424****[7]**C. B. Huijsmans,*Some analogies between commutative rings, Riesz spaces and distributive lattices with smallest element*, Nederl. Akad. Wetensch. Proc. Ser. A 77=Indag. Math.**36**(1974), 132–147. MR**0354635****[8]**C. B. Huijsmans and B. de Pagter,*Ideal theory in 𝑓-algebras*, Trans. Amer. Math. Soc.**269**(1982), no. 1, 225–245. MR**637036**, 10.1090/S0002-9947-1982-0637036-5**[9]**Suzanne Larson,*Minimal convex extensions and intersections of primary 𝐼-ideals in 𝑓-rings*, J. Algebra**123**(1989), no. 1, 99–110. MR**1000478**, 10.1016/0021-8693(89)90037-9**[10]**Gordon Mason,*𝑧-ideals and prime ideals*, J. Algebra**26**(1973), 280–297. MR**0321915****[11]**H. Subramanian,*𝑙-prime ideals in 𝑓-rings*, Bull. Soc. Math. France**95**(1967), 193–203. MR**0223284**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
06F25,
16A12

Retrieve articles in all journals with MSC: 06F25, 16A12

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0964843-2

Article copyright:
© Copyright 1988
American Mathematical Society