Some consequences of the standard polynomial

Author:
Qing Chang

Journal:
Proc. Amer. Math. Soc. **104** (1988), 707-710

MSC:
Primary 16A38

DOI:
https://doi.org/10.1090/S0002-9939-1988-0964846-8

MathSciNet review:
964846

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The standard polynomial of degree is the polynomial , where is the symmetric group on letters. We show that the polynomial

**[1]**S. A. Amitsur,*Alternating identities*, Ring theory (Proc. Conf., Ohio Univ., Athens, Ohio, 1976) Dekker, New York, 1977, pp. 1–14. Lecture Notes in Pure and Appl. Math., Vol. 25. MR**0439877****[2]**S. A. Amitsur,*Polynomial identities*, Israel J. Math.**19**(1974), 183–199. MR**0422335**, https://doi.org/10.1007/BF02756631**[3]**Edward Formanek,*The polynomial identities of matrices*, Algebraists’ homage: papers in ring theory and related topics (New Haven, Conn., 1981) Contemp. Math., vol. 13, Amer. Math. Soc., Providence, R.I., 1982, pp. 41–79. MR**685937****[4]**Nathan Jacobson,*𝑃𝐼-algebras*, Lecture Notes in Mathematics, Vol. 441, Springer-Verlag, Berlin-New York, 1975. An introduction. MR**0369421****[5]**Louis Halle Rowen,*Polynomial identities in ring theory*, Pure and Applied Mathematics, vol. 84, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR**576061**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
16A38

Retrieve articles in all journals with MSC: 16A38

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0964846-8

Keywords:
Polynomial identity,
standard polynomial,
Capelli polynomial

Article copyright:
© Copyright 1988
American Mathematical Society