Some consequences of the standard polynomial

Author:
Qing Chang

Journal:
Proc. Amer. Math. Soc. **104** (1988), 707-710

MSC:
Primary 16A38

DOI:
https://doi.org/10.1090/S0002-9939-1988-0964846-8

MathSciNet review:
964846

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The standard polynomial of degree is the polynomial , where is the symmetric group on letters. We show that the polynomial

**[1]**S. A. Amitsur,*Alternating identities*, Ring Theory (S. K. Jain editor), Proceedings of the Ohio Univ. Conference., pp. 1-14. MR**0439877 (55:12758)****[2]**-,*Polynomial identities*, Israel J. Math.**19**(1974), 183-199. MR**0422335 (54:10326)****[3]**E. Formanek,*The polynomial identities of matrices*, Contemp. Math., vol. 32, Amer. Math. Soc., Providence, R.I., 1982, pp. 41-79. MR**685937 (84b:16019)****[4]**N. Jacobson,*PI-algebras. An introduction*, Lecture Notes in Math., vol. 441, Springer-Verlag, Berlin and New York, 1975. MR**0369421 (51:5654)****[5]**L. H. Rowen,*Polynomial identities in ring theory*, Academic Press, New York, 1980. MR**576061 (82a:16021)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
16A38

Retrieve articles in all journals with MSC: 16A38

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0964846-8

Keywords:
Polynomial identity,
standard polynomial,
Capelli polynomial

Article copyright:
© Copyright 1988
American Mathematical Society