Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A characterization of complete intersection curves in $ {\bf P}\sp 3$


Author: Rosario Strano
Journal: Proc. Amer. Math. Soc. 104 (1988), 711-715
MSC: Primary 14M10; Secondary 14H50
DOI: https://doi.org/10.1090/S0002-9939-1988-0964847-X
MathSciNet review: 964847
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the following theorem. Let $ C \subset {{\mathbf{P}}^3}$ be a reduced and irreducible curve not lying on a quadric. If the generic plane section $ \Gamma $ of $ C$ is a complete intersection then $ C$ is a complete intersection.


References [Enhancements On Off] (What's this?)

  • [L] O. A. Laudal, A generalized trisecant lemma, Algebraic Geometry, Lecture Notes in Math., vol. 687, Springer-Verlag, Berlin, Heidelberg and New York, 1978, pp. 112-149. MR 527232 (81f:14019)
  • [H] J. Harris, The genus of space curves, Math. Ann. 249 (1980), 191-204. MR 579101 (81i:14022)
  • [M-R] R. Maggioni-A. Ragusa, The Hilbert function of generic plane sections of curves of $ {{\mathbf{P}}^3}$, Invent. Math. 91 (1988), 253-258. MR 922800 (89g:14027)
  • [S] R. Strano, Sulle sezioni iperpiane delle curve, Rend. Sem. Mat. Fis. Milano (to appear).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14M10, 14H50

Retrieve articles in all journals with MSC: 14M10, 14H50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0964847-X
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society