Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

A lifting theorem for the time regularity of solutions to abstract equations with unbounded operators and applications to hyperbolic equations
HTML articles powered by AMS MathViewer

by I. Lasiecka and R. Triggiani PDF
Proc. Amer. Math. Soc. 104 (1988), 745-755 Request permission

Abstract:

We consider the solution operator \[ (Lu)(t) = A\int _0^t {G(t - \tau )} {A^{ - 1}}Bu(\tau )d\tau \] corresponding to the abstract equation $\dot x = Ax + Bu$ on a reflexive Banach space $X$, where the linear operator $A:X \supset \mathcal {D}(A) \to X$ is the infinitesimal generator of a (strongly continuous) group $G(t)$ of bounded operators on $X$, and $B:U \supset \mathcal {D}(B) \to X$ is a generally unbounded linear operator with ${A^{ - 1}}B \in \mathcal {L}(U,X),U$ being another reflexive Banach space (without loss of generality we take $A$ to be boundedly invertible). Let $0 < T < \infty$ be given. We prove the following theorem: if $L$ is continuous ${L^p}(0,T;U) \to {L^p}(0,T;X), 1 < p < \infty$, then in fact $L:$ continuous ${L^p}(0,T;U) \to C[0,T];X$, a lifting regularity theorem in the time variable. Moreover, we show by a parabolic example with nonhomogeneous term in the Dirichlet boundary conditions that the theorem fails to be true, if $G(t)$ is merely a s.c. semigroup even if holomorphic. Applications of the theorem include mixed hyperbolic problems, including second order scalar hyperbolic equations defined on an open bounded domain $\Omega \subset {R^n},\partial \Omega = \Gamma$, with nonhomogeneous term of class ${L^2}(0,T;{L^2}(\Gamma ))$ acting in the Dirichlet or in the Neumann boundary conditions. In the former case, the theorem recovers the authors’ original procedure which yielded optimal regularity results for this dynamics [L-T.2]; in the latter, the theorem improves upon results of Lions-Magenes [L-M.1, vol. II]. Extension to $T = \infty$ is also studied.
References
    S. Chang, Ph. D. dissertation, Mathematics Department, Univ. of Florida, 1984.
  • S. Chang and I. Lasiecka, Riccati equations for nonsymmetric and nondissipative hyperbolic systems with $L_2$-boundary controls, J. Math. Anal. Appl. 116 (1986), no. 2, 378–414. MR 842807, DOI 10.1016/S0022-247X(86)80005-1
  • G. Da Prato, I. Lasiecka, and R. Triggiani, A direct study of the Riccati equation arising in hyperbolic boundary control problems, J. Differential Equations 64 (1986), no. 1, 26–47. MR 849662, DOI 10.1016/0022-0396(86)90069-0
  • N. Dunford and J. T. Schwartz, Linear operators. Part I, Interscience, New York, 1958. F. Flandoli, I. Lasiecka and R. Triggiani, Algebraic Riccati equations with non-smoothing observation arising in hyperbolic and Euler-Bernoulli equations, Ann. Mat. Pura Appl. (to appear).
  • Lop Fat Ho, Observabilité frontière de l’équation des ondes, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), no. 12, 443–446 (English, with French summary). MR 838598
  • Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
  • J.-L. Lions, Contrôle des systèmes distribués singuliers, Méthodes Mathématiques de l’Informatique [Mathematical Methods of Information Science], vol. 13, Gauthier-Villars, Montrouge, 1983 (French). MR 712486
  • Jacques-Louis Lions, Contrôlabilité exacte des systèmes distribués, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), no. 13, 471–475 (French, with English summary). MR 838402, DOI 10.1007/BFb0007542
  • J.-L. Lions, Optimal control of systems governed by partial differential equations. , Die Grundlehren der mathematischen Wissenschaften, Band 170, Springer-Verlag, New York-Berlin, 1971. Translated from the French by S. K. Mitter. MR 0271512
  • Jacques-Louis Lions, Un résultat de régularité pour l’opérateur $\partial ^2/\partial t^2+\Delta ^2$, Current topics in partial differential equations, Kinokuniya, Tokyo, 1986, pp. 247–260 (French). MR 1112149
  • I. Lasiecka, J.-L. Lions, and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl. (9) 65 (1986), no. 2, 149–192. MR 867669
  • J. L. Lions and E. Magenes, Nonhomogeneous boundary value problems and applications, vols. I, II, Springer-Verlag, Berlin and New York, 1972.
  • I. Lasiecka and R. Triggiani, A cosine operator approach to modeling $L_{2}(0,\,T;\ L_{2}(\Gamma ))$—boundary input hyperbolic equations, Appl. Math. Optim. 7 (1981), no. 1, 35–93. MR 600559, DOI 10.1007/BF01442108
  • I. Lasiecka and R. Triggiani, Regularity of hyperbolic equations under $L_{2}(0,\,T;L_{2}(\Gamma ))$-Dirichlet boundary terms, Appl. Math. Optim. 10 (1983), no. 3, 275–286. MR 722491, DOI 10.1007/BF01448390
  • I. Lasiecka and R. Triggiani, Riccati equations for hyperbolic partial differential equations with $L_2(0,T;L_2(\Gamma ))$-Dirichlet boundary terms, SIAM J. Control Optim. 24 (1986), no. 5, 884–925. MR 854062, DOI 10.1137/0324054
  • —, Uniform exponential energy decay of wave equation in a bounded region with ${L^2}(0,\infty ;{L^2}(\Gamma ))$-feedback control in the Dirichlet boundary conditions, J. Differential Equations 65 (1986), 340-390. —, Hyperbolic equations with nonhomogeneous Neumann boundary terms. Part I: Regularity, preprint 1983. —, Sharp regularity results for hyperbolic equations of Neumann type, 1987. —, Regularity theory for a class of Euler Bernoulli equations: a cosine operator approach, Boll. Un. Mat. Ital. (to appear).
  • I. Lasiecka and R. Triggiani, Exact controllability of the Euler-Bernoulli equation with controls in the Dirichlet and Neumann boundary conditions: a nonconservative case, SIAM J. Control Optim. 27 (1989), no. 2, 330–373. MR 984832, DOI 10.1137/0327018
  • —, Infinite horizon quadratic cost problems for boundary control problems, Proc. 20th CDC Conference, pp. 1005-1010, Los Angeles, December 1987.
  • Jeffrey Rauch, ${\cal L}_{2}$ is a continuable initial condition for Kreiss’ mixed problems, Comm. Pure Appl. Math. 25 (1972), 265–285. MR 298232, DOI 10.1002/cpa.3160250305
  • David L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions, SIAM Rev. 20 (1978), no. 4, 639–739. MR 508380, DOI 10.1137/1020095
  • Heinz-Otto Kreiss, Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math. 23 (1970), 277–298. MR 437941, DOI 10.1002/cpa.3160230304
  • Roberto Triggiani, A cosine operator approach to modelling boundary input hyperbolic systems, Optimization techniques (Proc. 8th IFIP Conf., Würzburg, 1977) Lecture Notes in Control and Information Sci., Vol. 6, Springer, Berlin, 1978, pp. 380–390. MR 0502082
  • —, Exact boundary controllability on ${L^2}(\Omega ) \times {H^{ - 1}}(\Omega )$ for the wave equation with Dirichlet control acting on a portion of the boundary, and related problems, Appl. Math. Optim. (to appear), Springer-Verlag Lecture Notes in Control Sciences, vol. 102, pp. 292-332, Proceedings of 3rd International Conference, Vorau, Austria, July 6-12, 1986.
  • R. Triggiani, Wave equation on a bounded domain with boundary dissipation: an operator approach, Operator methods for optimal control problems (New Orleans, La., 1986) Lecture Notes in Pure and Appl. Math., vol. 108, Dekker, New York, 1987, pp. 283–310. MR 920578
  • George Weiss, Admissibility of unbounded control operators, SIAM J. Control Optim. 27 (1989), no. 3, 527–545. MR 993285, DOI 10.1137/0327028
Similar Articles
Additional Information
  • © Copyright 1988 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 104 (1988), 745-755
  • MSC: Primary 34G10; Secondary 35L10, 47A50, 47D05
  • DOI: https://doi.org/10.1090/S0002-9939-1988-0964851-1
  • MathSciNet review: 964851