Pettis decomposition for universally scalarly measurable functions

Author:
Elizabeth M. Bator

Journal:
Proc. Amer. Math. Soc. **104** (1988), 795-800

MSC:
Primary 28B05; Secondary 46G10

MathSciNet review:
964859

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that if is a compact Hausdorff space, is a Banach space, and is bounded and universally scalarly measurable, then is -Pettis decomposable for every Radon measure on .

**[1]**Elizabeth M. Bator,*Pettis integrability and the equality of the norms of the weak* integral and the Dunford integral*, Proc. Amer. Math. Soc.**95**(1985), no. 2, 265–270. MR**801336**, 10.1090/S0002-9939-1985-0801336-4**[2]**Elizabeth M. Bator,*A decomposition of bounded scalarly measurable functions taking their ranges in dual Banach spaces*, Proc. Amer. Math. Soc.**102**(1988), no. 4, 850–854. MR**934855**, 10.1090/S0002-9939-1988-0934855-3**[3]**Elizabeth M. Bator, Paul Lewis, and David Race,*Some connections between Pettis integration and operator theory*, Rocky Mountain J. Math.**17**(1987), no. 4, 683–695. MR**923739**, 10.1216/RMJ-1987-17-4-683**[4]**J. Bourgain,*Martingales in conjugate Banach spaces*(Unpublished preprint).**[5]**D. H. Fremlin,*Pointwise compact sets of measurable functions*, Manuscripta Math.**15**(1975), 219–242. MR**0372594****[6]**R. S. Phillips,*Integration in a convex linear topological space*, Trans. Amer. Math. Soc.**47**(1940), 114–145. MR**0002707**, 10.1090/S0002-9947-1940-0002707-3**[7]**Lawrence H. Riddle and Elias Saab,*On functions that are universally Pettis integrable*, Illinois J. Math.**29**(1985), no. 3, 509–531. MR**786735****[8]**Lawrence H. Riddle, Elias Saab, and J. J. Uhl Jr.,*Sets with the weak Radon-Nikodým property in dual Banach spaces*, Indiana Univ. Math. J.**32**(1983), no. 4, 527–541. MR**703283**, 10.1512/iumj.1983.32.32038**[9]**Haskell P. Rosenthal,*A characterization of Banach spaces containing 𝑙¹*, Proc. Nat. Acad. Sci. U.S.A.**71**(1974), 2411–2413. MR**0358307****[10]**Michel Talagrand,*Pettis integral and measure theory*, Mem. Amer. Math. Soc.**51**(1984), no. 307, ix+224. MR**756174**, 10.1090/memo/0307

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
28B05,
46G10

Retrieve articles in all journals with MSC: 28B05, 46G10

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1988-0964859-6

Keywords:
Banach space,
Pettis integral,
universally scalarly measurable,
Bourgain property

Article copyright:
© Copyright 1988
American Mathematical Society