NONEXPANSIVE ACTIONS OF TOPOLOGICAL SEMIGROUPS
ON STRICTLY CONVEX BANACH SPACES
AND FIXED POINTS

WOJCIECH BARTOSZEK

(Communicated by John B. Conway)

ABSTRACT. Let C be a closed convex subset of a strictly convex Banach space X and \(\{T_s : s \in S\} \) be a continuous representation of a semitopological semigroup S as nonexpansive mappings of C into itself. The main result establishes the fact that if for some \(x \in C \) the trajectory \(\{T_s x : s \in S\} \) is relatively compact and \(AP(S) \) has a left invariant mean then \(K = \text{conv}\{T_s x : s \in S\} \) contains a common fixed point for \(\{T_s\}_s \).

Let C be a closed, convex subset of a Banach space X, and T be a nonexpansive mapping of C into C (i.e., \(\|Tx - Ty\| \leq \|x - y\| \) for every \(x, y \in C \)). For \(x \in C \) the orbit of x is the set \(\mathcal{O}(x) = \{T^n x : n \geq 0\} \) and the \(\omega \)-limit set of x is defined by \(\omega(x) = \{y : \lim T^{n_k} x = y \text{ for some subsequence } n_k \} \). The \(\omega \)-limit set of a point x is easily shown to be closed and \(T \)-invariant although possibly empty. If \(\omega(x) \) is nonempty then it is minimal (the orbit \(\mathcal{O}(y) \) is a dense subset of \(\omega(x) \) for every \(y \in \omega(x) \)) and the action of T on \(\omega(x) \) is isometric (see [D.S.]). By [R.S.], nonempty \(\omega(x) \) can be given the structure of a monothetic group. So there exists a \(T \)-invariant probability measure \(\mu \) (\(\mu \) is invariant if \(\mu \circ T^{-1} = \mu \)) on \(\omega(x) \) if and only if \(\omega(x) \) is (nonempty) compact (see also [B.D.]). The following lemma gives connections between the existence of compact orbits and \(T \)-invariant measures in slightly more general situations.

Lemma 1. Let \(X, C, T \) be as above. If C is separable and \(\mu \) is a \(T \)-invariant probability (on a Borel \(\sigma \)-field) then every \(x \in \text{supp} \mu \) is recurrent and \(\omega(x) \) is compact (\(\text{supp} \mu \) denotes here the smallest closed subset of C of full measure \(\mu \)).

Proof. Notice that \(\text{supp} \mu \) is a \(T \)-invariant subset of C (i.e., if \(x \in \text{supp} \mu \) then \(Tx \in \text{supp} \mu \)). By the classical Poincaré recurrence theorem, the set of recurrent points is full measure, so the set of recurrent points is dense in \(\text{supp} \mu \). Since T is nonexpansive, every \(x \in \text{supp} \mu \) is recurrent. Thus \(\text{supp} \mu = \bigcup_{x \in \text{supp} \mu} \omega(x) \), and for every \(x, y \in \text{supp} \mu \) the limit sets \(\omega(x), \omega(y) \) coincide or are disjoint. In order to show compactness of \(\omega(x) \) it is enough to show the existence of \(T \)-invariant probability on \(\omega(x) \). Let \(\mathcal{F} \) denote the partition of \(W = \text{supp} \mu \) on the sets \(\omega(x) \). It is known (see [R] or [P]) that there exists a system of canonical measures \(\mu_\tau \) concentrated on \(\tau (\tau = \omega(x) \text{ for } x \in W) \) such that

\[
\mu = \int_{W/\mathcal{F}} \mu_\tau \nu(d\tau)
\]
and ν is some probability measure on W/\mathcal{F}. Let $\sigma_{\mathcal{F}}$ denote the sub σ-field generated by sets of the partition \mathcal{F}. Clearly

$$\int f \, d\mu(x) = E(f | \sigma_{\mathcal{F}})(x) = E(f | \sigma_{\mathcal{F}})(T(x))$$

$$= E(f \circ T | \sigma_{\mathcal{F}})(x) = \int f \circ T \, d\mu(x),$$

for ν almost all $\omega(x) \in W/\mathcal{F}$ (f is here an arbitrary continuous function on $\text{supp} \mu$). Thus, for ν and almost all τ, the measures μ_{τ} are T-invariant, so $\omega(x)$ is compact for x from a dense subset of W (see [R.S.] or [B.D.]). But the set $\{ y : \omega(y) \text{ is compact} \}$ is closed (and convex if X is strictly convex), and thus for all $x \in \text{supp} \mu$ the orbit $\omega(x) = \overline{\mathcal{O}(x)}$ is compact.

PROPOSITION. Let X be a strictly convex Banach space and C be a separable, convex, closed subset of X. If $T : C \to C$ is nonexpansive then the following conditions are equivalent:

(i) the set $F(T)$ of fixed points of T is nonempty;

(ii) there exists a T-invariant probability;

(iii) there exists $x \in C$ such that $\overline{\mathcal{O}(x)}$ is compact.

Proof. Because (i)\Rightarrow(ii) and (iii)\Rightarrow(ii) are trivial and (ii)\Rightarrow(iii) follows from our lemma we only have to show (ii)\Rightarrow(i). Let μ be the T-invariant probability measure on $\omega(x)$ (unique by nonexpansiveness of T). Since T is affine on $\text{conv} \, \omega(x)$ (see [E] or [Y]), for every $x^* \in X^*$, $x \circ T$ is affine, continuous and $x^* \circ (\text{bar} \, \mu) = \int_{\omega(x)} x^*(y) \mu(dy) = \int_{\omega(x)} x^* \circ T(y) \mu(dy) = x^* \circ T(\text{bar} \, \mu) = x^* (T(\text{bar} \, \mu))$. Since the functionals separate points of X the barycenter of μ is a fixed point of T.

Let S be a semitopological semigroup, i.e., S is a semigroup with a Hausdorff topology such that for each $a \in S$ the mappings $s \to as$ and $s \to sa$ from S to S are continuous. Let X be a strictly convex Banach space, and $S \ni s \to T_s$ be a continuous representation of S as nonexpansive mappings on a closed convex subset C of X into C, i.e., $T_{ab}(x) = T_a(T_b(x))$, $a,b \in S$, $x \in C$, and the mapping $s \to T_s x$ from S into C is continuous for every $x \in C$. If $f \in C(S)$ and $a \in S$ define $l_a f(s) = f(as)$ and $r_a f(s)$ for all $s \in S$ ($C(S)$ denotes here the set of all continuous bounded functions on S). Recall, a function $f \in C(S)$ is said to be almost periodic on S if $\{ r_a f : a \in S \}$ is relatively compact in the norm topology of $C(S)$. The subalgebra of all almost periodic functions on S we denote by $AP(S)$.

A linear functional $m \in AP(S)^*$ is called a left invariant mean if for all $a \in S$ and $f \in AP(S)$ we have $\langle l_a f, m \rangle = \langle f, m \rangle$ and $\langle 1, m \rangle = 1$. The following theorem is a partial solution of Problem 2 from [L.2].

THEOREM. Let $\{ T_s : s \in S \}$ be a continuous representation of a semitopological semigroup S as nonexpansive mappings on a closed convex subset of a strictly convex Banach space X. If $AP(S)$ has a left invariant mean, $x \in C$ such that $\{ T_s x : s \in S \}$ is relatively compact then $K = \text{conv} \{ T_s x : s \in S \}$ contains a common fixed point for $\{ T_s \}_{s \in S}$.

Proof. It is clear that for every continuous function f on C the function \tilde{f} defined on S as $\tilde{f}(s) = f(T_s x)$ belongs to $AP(S)$. Thus a left invariant mean m on $AP(S)$ defines a probability measure μ on $\{ T_s x : s \in S \}$. Clearly (see [L.1]), the measure μ
is T_s-invariant for every $s \in S$. By Lemma 1, if $y \in \text{supp} \mu$ then for every $s \in S$, y is T_s recurrent and T_s is affine on $K' = \text{conv}(\text{supp} \mu) \subseteq K$. But by our proposition the barycenter of measure $\text{bar}(\mu) \in K'$ is a fixed point for every T_s.

It is a pleasure to thank Professors Lau and Sine for sending me preprints of some of their works. These lead to the following remark: Problem 2 of Lau [L.2] has a negative answer in general. There is an appropriate nonexpansive map T in a 3-dimensional (Banach) space for which $(N+1)^{-1}(I+T+\cdots+T^N)x$ converges, but the limit is not a fixed point, and there is no fixed point in the closed convex hull of the orbit (see Robert Sine, *Behaviour of iterates in the Poincare metric*, preprint, 1986).

REFERENCES

Institute of Mathematics, Polish Academy of Sciences, Wroclaw Branch, Kopernika 18, 51–617 Wroclaw, Poland

Current address: ul. Sułkowskiego 4 m. 14, 85-655 Bydgoszcz, Poland