Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Phragmén-Lindelöf theorem for the minimal surface equation


Author: Jenn-Fang Hwang
Journal: Proc. Amer. Math. Soc. 104 (1988), 825-828
MSC: Primary 35B05; Secondary 35J60, 49F10, 53A10
DOI: https://doi.org/10.1090/S0002-9939-1988-0964864-X
MathSciNet review: 964864
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that if $ u$ satisfies the minimal surface equation in an unbounded domain $ \Omega $ which is properly contained in a half plane, then the growth property of $ u$ depends on $ \Omega $ and the boundary value of $ u$ only.


References [Enhancements On Off] (What's this?)

  • [1] P. Aviles, Phragmén-Lindelöf and nonexistence theorems for nonlinear elliptic equations, Manuscripta Math. 43 (1983), 107-129. MR 707041 (85a:35030)
  • [2] A. Friedman, On two theorems of Phragmén-Lindelöf for linear elliptic and parabolic differential equations of the second order, Pacific J. Math. 7 (1957), 1563-1575. MR 0100713 (20:7142)
  • [3] S. Granlund, A Phragmén-Lindelöf principle for subsolutions of quasi-linear equations, Manuscripta Math. 36 (1981), 355-365. MR 641981 (84f:35051)
  • [4] D. Gilbarg and N. S. Trundinger, Elliptic partial differential equations of second order, Springer-Verlag, New York, 1977. MR 0473443 (57:13109)
  • [5] D. Gilbarg, The Phragmén-Lindelöf theorem for elliptic partial differential equations, J. Rational Mech. Anal. 1 (1952), 411-417. MR 0050122 (14:279d)
  • [6] E. Hopf, Remarks on the preceding paper of D. Gilbarg, J. Rational Mech. Anal. 1 (1952), 418-424. MR 0050123 (14:279e)
  • [7] K. Miller, Extremal barriers on cones with Phragmén-Lindelöf theorems and other applications, Ann. Mat. Pura Appl. 90 (1971), 297-329. MR 0316884 (47:5432)
  • [8] J. C. C. Nitsche, On new results in the theory of minimal surfaces, Bull. Amer. Math. Soc. 71 (1965), 195-270. MR 0173993 (30:4200)
  • [9] -, Vorlesungen über Minimalflächen, Springer-Verlag, Berlin-Heidelberg-New York, 1975.
  • [10] A. A. Novruzov, On theorems of Phragmén-Lindelöf type for solutions of second-order linear and quasilinear elliptic equations with discontinuous coefficients, Soviet Math. Dokl. 26 (1982), 376-379. MR 672381 (84k:35047)
  • [11] R. Osserman, A survey of minimal surfaces, Van Nostrand-Reinhold, New York, 1969. MR 0256278 (41:934)
  • [12] M. H. Protter and H. F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Englewood Cliffs, N. J., 1967. MR 0219861 (36:2935)
  • [13] J. Serrin, On the Phragmén-Lindelöf principle for elliptic differential equations, J. Rational Mech. Anal. 3 (1954), 395-413. MR 0062918 (16:42a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35B05, 35J60, 49F10, 53A10

Retrieve articles in all journals with MSC: 35B05, 35J60, 49F10, 53A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0964864-X
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society