Volumes of flows

Author:
David L. Johnson

Journal:
Proc. Amer. Math. Soc. **104** (1988), 923-931

MSC:
Primary 53C20; Secondary 58F17

DOI:
https://doi.org/10.1090/S0002-9939-1988-0964875-4

MathSciNet review:
964875

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If is an oriented nonsingular flow on a Riemannian manifold , the *volume* of is defined as the -dimensional measure of the unit vector field tangent to , as a section of with the induced metric. It is shown that, for any metric of the two-dimensional torus, and for any homotopy class of flows on the torus, there is a unique smooth flow of minimal volume within the homotopy class. It has been shown that the Hopf foliation on the round threesphere absolutely minimizes the volume of flows on . In higher dimensions this is not the case; the Hopf fibrations are not even local minima of the volume functional for flows on the round five-sphere. It is not known whether a volume-minimizing flow on exists.

**[1]**M. Berger,*Nonlinearity and functional analysis*, Academic Press, New York, 1977. MR**0488101 (58:7671)****[2]**I. Chavel and E. Feldman,*The first eigenvalue of the Laplacian on manifolds of nonnegative curvature*, Proc. Sympos. Pure Math., vol. 27, Amer. Math. Soc., Providence, R.I., 1975, pp. 351-353. MR**0378002 (51:14171)****[3]**R. Escobales,*Riemannian foliations of the rank-one symmetric spaces*, Proc. Amer. Math. Soc.**95**(1985), 495-498. MR**806095 (87g:57040)****[4]**J. Girbau, A. Haefliger and D. Sundararaman,*On deformations of transverseley holomorphic foliations*, 3. Reine Angew. Math.**346**(1983), 122-147. MR**717890 (84j:32026)****[5]**H. Gluck,*Can space be filled by geodesies, and if so, how?*, manuscript.**[6]**-,*Dynamical behavior of geodesic fields*, Global Theory of Dynamical Systems (Proc. Northwestern Univ., 1979), Lecture Notes in Math., vol. 819, Springer-Verlag, Berlin, Heidelberg, and New York, 1980, pp. 190-215. MR**591184 (82c:58052)****[7]**H. Gluck and W. Ziller,*On the volume of a unit vector field on the three-sphere*, Comment. Math. Helv.**61**(1986), 177-192. MR**856085 (87j:53063)****[8]**J. Heitsch,*A cohomology for foliated manifolds*, Comment. Math. Helv.**50**(1975), 197-218. MR**0372877 (51:9081)****[9]**D. L. Johnson,*Deformations of totally geodesic foliations*, Geometry and Topology: Manifolds, Varieties (Proc. 1985 Georgia Topology Festival; C. McCrory and T. Shifrin, eds.), Marcel Dekker, 1986, pp. 167-178. MR**873293 (88k:57035)****[10]**-,*Families of foliations*(to appear).**[11]**D. L. Johnson and L. B. Whitt,*Totally geodesic foliations*, J. Differential Geom.**15**(1980), 225-235. MR**614368 (83h:57037)****[12]**L. Nirenberg,*VariatIonal and topological methods in nonlinear analysis*, Bull. Amer. Math. Soc. (N.S.)**4**(1981), 276-302. MR**609039 (83e:58015)****[13]**C. Okonek, M. Schneider, and H. Spindler,*Vector bundles on complex projective spaces*, Progress in Math. # 3, Birkhäuser, Boston, Mass., 1980. MR**561910 (81b:14001)****[14]**B. O'Neill,*The fundamental equations of a submersion*, Michigan Math. J.**13**(1966), 459-469. MR**0200865 (34:751)****[15]**S. Sasaki,*On the differential geometry of tangent bundles of Riemannian manifolds*, Tôhoku Math. J.**10**(1958), 338-354. MR**0112152 (22:3007)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
53C20,
58F17

Retrieve articles in all journals with MSC: 53C20, 58F17

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0964875-4

Article copyright:
© Copyright 1988
American Mathematical Society