Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Eventual extensions of finite codes


Author: Mike Boyle
Journal: Proc. Amer. Math. Soc. 104 (1988), 965-972
MSC: Primary 28D20; Secondary 54H20, 58F11
DOI: https://doi.org/10.1090/S0002-9939-1988-0964880-8
MathSciNet review: 964880
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose $ S$ and $ T$ are shift equivalent mixing shifts of finite type, and $ f$ is a conjugacy from a subsystem of $ S$ to a subsystem of $ T$. Then for any sufficiently large $ n$, $ f$ extends to a conjugacy of $ {S^n}$ and $ {T^n}$. A consequence of the proof is a fortified version of Wagoner's Stable FOG Theorem.


References [Enhancements On Off] (What's this?)

  • [B1] M. Boyle, Lower entropy factors of sofic systems, Ergodic Theory Dynamical Systems 4 (1984), 541-557. MR 753922 (85m:54014)
  • [B2] M. Boyle, Nasu's simple automorphisms, Dynamical Systems-Maryland 1986-1987, Proceedings of a Special Year, ed. J. Alexander, Lecture Notes in Math., vol. 1342, Springer.
  • [BK] M. Boyle and W. Krieger, Periodic points and automorphisms of the shift, Trans. Amer. Math. Soc. 32 (1987), 125-149. MR 887501 (88g:54065)
  • [BLR] M. Boyle, D. Lind and D. Rudolph, The automorphism group of a shift of finite type, Trans. Amer. Math. Soc. 306 (1988), 71-114. MR 927684 (89m:54051)
  • [BMT] M. Boyle, B. Marcus and P. Trow, Resolving maps and the dimension group for shifts of finite type, Mem. Amer. Math. Soc. No. 377 (1987). MR 912638 (89c:28019)
  • [F] U. Fiebig, Ph.D. Thesis, Univ. of Heidelberg, 1987.
  • [KR] K. H. Kim and F. W. Roush, Some results on decidability of shift equivalence, J. Combin. Inform. System Sci. 4 (1979), 123-146. MR 564188 (81m:58064)
  • [K] W. Krieger, On the subsystems of topological Markov chains, Ergodic Theory Dynamical Systems 2 (1982), 195-202. MR 693975 (85b:28020)
  • [N1] M. Nasu, Topological conjugacy for sofic systems, Ergodic Theory Dynamical Systems 6 (1986), 265-280. MR 857201 (88f:28018)
  • [N2] -, Topological conjugacy for sofic systems and extensions of automorphisms of finite subsystems of topological Markov shifts, Dynamical Systems-Maryland 1986-1987, Proceedings of a Special Year, ed. J. Alexander, Lecture Notes in Math., vol. 1342, Springer.
  • [PT] W. Parry and S. Tuncel, Classification problems in ergodic theory, London Math. Soc. Lecture Notes 67, Cambridge Univ. Press, 1982. MR 666871 (84g:28024)
  • [Wa1] J. B. Wagoner, Triangle identities and symmetries of a subshift of finite type, Preprint, Univ. of California, Berkeley, 1987. MR 1056673 (91h:28017)
  • [Wa2] -, Stable finite order generation for the kernel of the dimension representation, Trans. Amer. Math. Soc. (to appear).
  • [Wi] R. F. Williams, Classification of subshifts of finite type, Ann. of Math. (2) 98 (1973), 120-153; Errata, Ann. of Math. (2) 99 (1974), 380-381. MR 0331436 (48:9769)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28D20, 54H20, 58F11

Retrieve articles in all journals with MSC: 28D20, 54H20, 58F11


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0964880-8
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society