Continuity of additive -metric functions and metrization of -metric spaces

Author:
Takesi Isiwata

Journal:
Proc. Amer. Math. Soc. **104** (1988), 988-992

MSC:
Primary 54E35; Secondary 54C05, 54E15, 54E99

DOI:
https://doi.org/10.1090/S0002-9939-1988-0964884-5

MathSciNet review:
964884

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For an additive -metric space with an -continuous -metric , we prove that is metrizable, and that if is locally regular, then is bicontinuous, and is a metric on which agrees with the topology of .

**[1]**C. J. Borges,*On stratifiable spaces*, Pacific J. Math.**17**(1966), 1-16. MR**0188982 (32:6409)****[2]**A. N. Dranišnikov,*Simultaneous annihilator of families of closed sets*,*-metrizable and stratifiable spaces*, Soviet Math. Dokl.**19**(1978), 1466-1469.**[3]**T. Isiwata,*Metrization of additive**-metric spaces*, Proc. Amer. Math. Soc.**100**(1987), 164-168. MR**883422 (88d:54037)****[4]**E. V. Ščepin,*Topology of limit spaces on uncountable inverse spectra*, Russian Math. Surveys**31**(1976), 155-191. MR**0464137 (57:4072)****[5]**-,*On**-metrizable spaces*, Math. USSR Izv.**14**(1980), 407-440.**[6]**J. Suzuki, K. Tamamo and Y. Tanaka,*-metrizable spaces, stratifiable spaces and metrizations*, Proc. Amer. Math. Soc.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54E35,
54C05,
54E15,
54E99

Retrieve articles in all journals with MSC: 54E35, 54C05, 54E15, 54E99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0964884-5

Keywords:
Metrization,
additive -metric,
Vietoris topology,
continuous maps

Article copyright:
© Copyright 1988
American Mathematical Society