Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Continuity of additive $ \kappa$-metric functions and metrization of $ \kappa$-metric spaces


Author: Takesi Isiwata
Journal: Proc. Amer. Math. Soc. 104 (1988), 988-992
MSC: Primary 54E35; Secondary 54C05, 54E15, 54E99
DOI: https://doi.org/10.1090/S0002-9939-1988-0964884-5
MathSciNet review: 964884
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For an additive $ \kappa$-metric space $ X$ with an $ s\left( x \right)$-continuous $ \kappa $-metric $ d\left( {x,C} \right)$, we prove that $ X$ is metrizable, and that if $ d\left( {x,C} \right)$ is locally regular, then $ z\left( {x,y} \right)$ is bicontinuous, and $ \rho \left( {x,y} \right) = z\left( {x,y} \right) + z\left( {x,y} \right)$ is a metric on $ X$ which agrees with the topology of $ X$.


References [Enhancements On Off] (What's this?)

  • [1] C. J. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1-16. MR 0188982 (32:6409)
  • [2] A. N. Dranišnikov, Simultaneous annihilator of families of closed sets, $ \kappa $-metrizable and stratifiable spaces, Soviet Math. Dokl. 19 (1978), 1466-1469.
  • [3] T. Isiwata, Metrization of additive $ \kappa $-metric spaces, Proc. Amer. Math. Soc. 100 (1987), 164-168. MR 883422 (88d:54037)
  • [4] E. V. Ščepin, Topology of limit spaces on uncountable inverse spectra, Russian Math. Surveys 31 (1976), 155-191. MR 0464137 (57:4072)
  • [5] -, On $ \kappa $-metrizable spaces, Math. USSR Izv. 14 (1980), 407-440.
  • [6] J. Suzuki, K. Tamamo and Y. Tanaka, $ \kappa $-metrizable spaces, stratifiable spaces and metrizations, Proc. Amer. Math. Soc.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54E35, 54C05, 54E15, 54E99

Retrieve articles in all journals with MSC: 54E35, 54C05, 54E15, 54E99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0964884-5
Keywords: Metrization, additive $ \kappa $-metric, Vietoris topology, continuous maps
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society