Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Note on multiplicity


Author: Daniel Katz
Journal: Proc. Amer. Math. Soc. 104 (1988), 1021-1026
MSC: Primary 13H15; Secondary 13B20
DOI: https://doi.org/10.1090/S0002-9939-1988-0929434-8
MathSciNet review: 929434
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ (R,M)$ be a local ring with infinite residue field and $ I = ({x_1}, \ldots ,{x_d})R$ an ideal generated by a system of parameters. It is shown that the multiplicity of $ I$ equals the multiplicity of $ IT$ where

$\displaystyle T = \tilde R{[{x_1}/{x_d}, \ldots ,{x_{d - 1}}/{x_d}]_{M\tilde R[{x_1}/{x_d}, \ldots ,{x_{d - 1}}/{x_d}]}}$

and $ \tilde R = R/(0:x_d^N),N$ large.

References [Enhancements On Off] (What's this?)

  • [1] D. Katz, On the number of minimal prime ideals in the completion of a local domain, Rocky Mountain J. Math. 16 (1986), 575-578. MR 862283 (87k:13014)
  • [2] D. G. Northcott, Lessons on rings, modules and multiplicities, Cambridge Univ. Press, Cambridge, 1968. MR 0231816 (38:144)
  • [3] D. G. Northcott and D. Rees, Reductions of ideals in local rings, Math. Proc. Cambridge Philos. Soc. 50 (1954), 145-158. MR 0059889 (15:596a)
  • [4] D. Rees, A note on analytically unramified local rings, J. London Math. Soc. 36 (1961), 24-28. MR 0126465 (23:A3761)
  • [5] -, Degree functions in local rings, Math. Proc. Cambridge Philos. Soc. 57 (1961), 1-7. MR 0124353 (23:A1667)
  • [6] -, $ \mathcal{A}$-transforms of local rings and a theorem on multiplicities of ideals, Math. Proc. Cambridge Philos. Soc. 57 (1961), 8-17. MR 0118750 (22:9521)
  • [7] D. Rees and R. Y. Sharp, On a theorem of B. Teissier on multiplicities of ideals in local rings, J. London Math. Soc. 18 (1978), 449-463. MR 518229 (80e:13009)
  • [8] B. Teissier, Cycles evanescents, sections planes, et conditions de Whitney, Singularités à Cargése 1972, Astérique 7-8 (1973). MR 0374482 (51:10682)
  • [9] -, Sur une inégalité la Minkowski pour les multiplicités (Appendix to a paper by D. Eisenbud and H. I. Levine), Ann. of Math. (2) 106 (1977), 38-44.
  • [10] -, On a Minkowski-type inequality for multiplicities-II, C. P. Ramanujam--A Tribute, Tata Institute Studies in Mathematics, Springer-Verlag, Berlin and New York, 1978, pp. 347-361. MR 541030 (80j:14002)
  • [11] O. Zariski and P. Samuel, Commutative algebra, vol. II, Van Nostrand Reinhold, New York, N. Y., 1960. MR 0120249 (22:11006)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13H15, 13B20

Retrieve articles in all journals with MSC: 13H15, 13B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0929434-8
Keywords: Multiplicity, superficial element, integral closure of an ideal
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society