Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some remarks on the Pompeiu problem for groups


Authors: David Scott and Alladi Sitaram
Journal: Proc. Amer. Math. Soc. 104 (1988), 1261-1266
MSC: Primary 43A60; Secondary 22E30, 43A80
DOI: https://doi.org/10.1090/S0002-9939-1988-0931747-0
MathSciNet review: 931747
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A Borel set $ E$ in a topological group $ G$ is said to be a $ P$-set for the space of integrable functions on $ G$ if the zero function is the only integrable function whose integral over all left and right translates of $ E$ by elements of $ G$ is zero. For a "sufficiently nice" group $ G$ and a Borel set $ E$ of finite Haar measure a certain condition on the Fourier transform of a function related to $ E$ is shown to be a sufficient condition for $ E$ to be a $ P$-set. This condition is then applied to several classes of groups including certain compact groups, certain semisimple Lie groups, the Heisenberg groups and the Euclidean motion group of the plane.


References [Enhancements On Off] (What's this?)

  • [Ba-Si] S. C. Bagchi and A. Sitaram, Determining sets for measures on $ {{\mathbf{R}}^n}$, Illinois J. Math. 26 (1982), 419-422. MR 658452 (83h:28020)
  • [Be I] C. A. Berenstein, An inverse spectral theorem and its relation to the Pompeiu problem, J. Analyse Math. 37 (1980), 128-144. MR 583635 (82b:35031)
  • [Be II] C. A. Berenstein, Spectral synthesis on symmetric spaces, Contemp. Math. Amer., vol. 63, Math. Soc., Providence, R.I., 1987, pp. 1-25. MR 876311 (88j:32045)
  • [Be-Sh] C. A. Berenstein and M. Shahshahani, Harmonic analysis and the Pompeiu problem, Amer. J. Math. 105 (1983), 1217-1229. MR 714774 (85d:32061)
  • [Be-Z] C. A. Berenstein and L. Zalcman, The Pompeiu problem in symmetric spaces, Comment. Math. Helv. 55 (1980), 593-621. MR 604716 (83d:43012)
  • [Br-S-T] L. Brown, B. M. Schreiber and B. A. Taylor, Spectral synthesis and the Pompeiu problem, Ann. Inst. Fourier 23 (1973), 125-154. MR 0352492 (50:4979)
  • [L] R. Lipsman, Group representations, Lecture Notes in Math., vol. 388, Springer, 1974. MR 0372116 (51:8333)
  • [R I] I. K. Rana, Determination of probability measures through group actions, Ph.D. thesis, Indian Statistical Institute, 1979. MR 580913 (82c:28025)
  • [R II] I. K. Rana, Determination of probability measures through group actions, Zeit Wahr,53 (1980), 197-206. MR 580913 (82c:28025)
  • [Sa] N. A. Sapagov, A uniqueness problem for finite measures in Euclidean spaces--problems in the theory of probability distributions, Zap. Nauchn. Sem. (LOMI) Leningrad, vol. 41, 1974, pp. 3-13. MR 0385946 (52:6805)
  • [Si I] A. Sitaram, Fourier analysis and determining sets for Radon measures on $ {{\mathbf{R}}^n}$, Illinois J. Math. 28 (1984), 339-347. MR 740622 (85k:28010)
  • [Si II] A. Sitaram, Some remarks on measures on noncompact semisimple Lie groups, Pacific J. Math. 110 (1984), 429-434. MR 726500 (85i:43019)
  • [Su] M. Sugiura, Unitary representations and harmonic analysis--an introduction, Kodansha, 1975. MR 0498995 (58:16977)
  • [T] M. E. Taylor, Noncommutative harmonic analysis, Math. Surveys and Monos., vol. 22, Amer. Math. Soc., Providence, R.I., 1986. MR 852988 (88a:22021)
  • [Wa] G. Warner, Harmonic analysis on semisimple Lie groups, 2 vols., Springer-Verlag, 1972.
  • [We] Y. Weit, On Schwartz's theorem for the motion group, Ann. Inst. Fourier 30 (1980), 91-107. MR 576074 (81h:43007)
  • [Z] L. Zalcman, Offbeat integral geometry, Amer. Math. Monthly 87 (1980), 161-175. MR 562919 (81b:53046)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A60, 22E30, 43A80

Retrieve articles in all journals with MSC: 43A60, 22E30, 43A80


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0931747-0
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society