A symmetric density property: monotonicity and the approximate symmetric derivative

Authors:
C. Freiling and D. Rinne

Journal:
Proc. Amer. Math. Soc. **104** (1988), 1098-1102

MSC:
Primary 26A48; Secondary 26A24

MathSciNet review:
936773

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The following is established:

Let and be open sets of real numbers whose union has full measure. If for each , the set has density zero at zero, then these sets are all empty.

This is then used to prove the following:

If is a continuous real valued function with a nonnegative lower approximate symmetric derivative, then is nondecreasing.

**[1]**N. K. Kundu,*On approximate symmetric derivative*, Colloq. Math.**28**(1973), 275–285. MR**0327991****[2]**Lee Larson,*Symmetric real analysis: a survey*, Real Anal. Exchange**9**(1983/84), no. 1, 154–178. MR**742782****[3]**-,*Monotonicity and the approximate symmetric derivative*, Real Anal. Exchange**12**(1986-1987), 121-123.**[4]**Jiří Matoušek,*Approximate symmetric derivative and monotonicity*, Comment. Math. Univ. Carolin.**27**(1986), no. 1, 83–86. MR**843422****[5]**S. N. Mukhopadhyay,*On approximate Schwarz differentiability*, Monatsh. Math.**70**(1966), 454–460. MR**0202937****[6]**H. H. Pu and H. W. Pu,*On approximate Schwarz derivates*, Rev. Roumaine Math. Pures Appl.**25**(1980), no. 2, 257–264. MR**577036**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
26A48,
26A24

Retrieve articles in all journals with MSC: 26A48, 26A24

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0936773-3

Keywords:
Symmetric derivative,
approximate symmetric derivative,
density,
monotonicity

Article copyright:
© Copyright 1988
American Mathematical Society