Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Mixed-norm generalizations of Bergman spaces and duality


Author: Steve Gadbois
Journal: Proc. Amer. Math. Soc. 104 (1988), 1171-1180
MSC: Primary 46E15
DOI: https://doi.org/10.1090/S0002-9939-1988-0948149-3
MathSciNet review: 948149
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Conditions sufficient for boundedness of the Bergman projection on certain "mixed-norm" spaces of functions on the unit ball of $ {{\mathbf{C}}^N}$ are given, and this is used to identify the dual space of such mixed-norm spaces. Several representation theorems that follow from the duality are also given.


References [Enhancements On Off] (What's this?)

  • [1] D. Békollé, Inégalitiés à poids pour le projecteur de Bergman dans la boule unité de $ {{\mathbf{C}}^n}$, Studia Math. 71 (1982), 305-323.
  • [2] A. Benedek and R. Panzone, The spaces $ {L^p}$, with mixed norm, Duke Math. J. 28 (1961), 301-324. MR 0126155 (23:A3451)
  • [3] F. Forelli and W. Rudin, Projections on spaces of holomorphic functions in balls, Indiana Univ. Math. J. 24 (1974), 593-602. MR 0357866 (50:10332)
  • [4] D. Luecking, Representation and duality in weighted spaces of analytic functions, Indiana Univ. Math. J. 34 (1985), 319-336. MR 783918 (86e:46020)
  • [5] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. MR 0293384 (45:2461)
  • [6] W. Rudin, Function theory in the unit ball of $ {{\mathbf{C}}^n}$, Springer-Verlag, 1980. MR 601594 (82i:32002)
  • [7] J. Shapiro, Linear functionals on non-locally convex spaces, Ph.D. dissertation, University of Michigan, 1968.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E15

Retrieve articles in all journals with MSC: 46E15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0948149-3
Keywords: Mixed-norm, Bergman space, dual
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society