Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Functions not vanishing on trivial Gleason parts of Douglas algebras


Author: Pamela Gorkin
Journal: Proc. Amer. Math. Soc. 104 (1988), 1086-1090
MSC: Primary 46J10
DOI: https://doi.org/10.1090/S0002-9939-1988-0969050-5
MathSciNet review: 969050
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ B$ denote a closed subalgebra of $ {L^\infty }$ containing the space of bounded analytic functions. Let $ M(B)$ denote the maximal ideal space of $ B$. Let $ f$ be a function in $ B$ such that $ f$ does not vanish on any Gleason part consisting of a single point. We show that if $ g$ is a function in $ B$ such that $ \left\vert g \right\vert \leq \left\vert f \right\vert{\text{ on }}M(B)$, then $ g/f \in B$.


References [Enhancements On Off] (What's this?)

  • [1] T. Abrams and M. Weiss, Some characterizations of trivial parts for $ {H^\infty }(D)$, preprint.
  • [2] S. Axler, Subalgebras of $ {L^\infty }$, Thesis, University of Calfornia at Berkeley, 1975.
  • [3] S. Axler and P. Gorkin, Divisibility in Douglas algebras, Michigan Math. J. 31 (1984), 89-94. MR 736473 (85h:46075)
  • [4] P. Budde, Support sets and Gleason parts of $ M({H^\infty })$, Doctoral Dissertation, University of California at Berkeley, 1982.
  • [5] S.-Y. Chang, A characterization of Douglas subalgebras, Acta Math. 137 (1976), 81-89. MR 0428044 (55:1074a)
  • [6] -, Structure of subalgebras between $ {L^\infty }$ and $ {H^\infty }$, Trans. Amer. Math. Soc. 227 (1977), 319-332. MR 0433213 (55:6192)
  • [7] T. Gamelin, Uniform algebras, Chelsea, New York, 1984.
  • [8] C. Guillory, K. Izuchi and D. Sarason, Interpolating Blaschke products and division in Douglas algebras, Proc. Royal Irish Acad. 84A (1984), 1-7. MR 771641 (86j:46054)
  • [9] K. Hoffman, Bounded analytic functions and Gleason parts, Ann. of Math. 86 (1967), 74-111. MR 0215102 (35:5945)
  • [10] D. E. Marshall, Subalgebras of $ {L^\infty }$ containing $ {H^\infty }$, Acta Math. 137 (1976), 91-98. MR 0428045 (55:1074b)
  • [11] D. Sarason, Function theory on the unit circle, Virginia Polytechnical Institute and State University, Blacksburg, Virginia, 1979. MR 521811 (80d:30035)
  • [12] T. H. Wolff, Two algebras of bounded functions, Duke Math. J. 49 (1982), 321-328. MR 659943 (84c:30051)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46J10

Retrieve articles in all journals with MSC: 46J10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0969050-5
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society