Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Inequalities for $ \alpha$-optimal partitioning of a measurable space


Author: Jerzy Legut
Journal: Proc. Amer. Math. Soc. 104 (1988), 1249-1251
MSC: Primary 60A10; Secondary 28A99
DOI: https://doi.org/10.1090/S0002-9939-1988-0969055-4
MathSciNet review: 969055
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An $ \alpha $-optimal partition $ \{ A_i^ * \} _{i = 1}^n$ of a measurable space according to $ n$ nonatomic probability measures $ \{ {\mu _i}\} _{i = 1}^n$ is defined. A two-sided inequality for $ {\nu ^ * } = \min \alpha _i^{ - 1}{\mu _i}(A_i^ * )$ is given. This estimation generalizes and improves a result of Elton et al. [3].


References [Enhancements On Off] (What's this?)

  • [1] L. Dubins and E. Spanier, How to cut a cake fairly, Amer. Math. Monthly 68 (1961), 1-17. MR 0129031 (23:B2068)
  • [2] A. Dvoretzky, A. Wald and J. Wolfowitz, Relations among certain ranges of vector measures, Pacific J. Math. 1 (1951), 59-74. MR 0043865 (13:331f)
  • [3] J. Elton, T. Hill and R. Kertz, Optimal partitioning inequalities for nonatomic probability measures, Trans. Amer. Math. Soc. 296 (1986), 703-725. MR 846603 (87m:60012)
  • [4] J. Legut, Market games with continuum of indivisible commodities, J. Game Theory 15 (1986), 1-7. MR 839092 (87i:90357)
  • [5] J. Legut and M. Wilczyński, Optimal partitioning of a measurable space, Proc. Amer. Math. Soc. Volume 104, Number 1, September 1988. MR 958079 (90g:28009)
  • [6] H. Steinhaus, Sur la division pragmatique, Econometrica Supplement 17 (1949), 315-319. MR 0039231 (12:515d)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60A10, 28A99

Retrieve articles in all journals with MSC: 60A10, 28A99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0969055-4
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society