Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A homeomorphism on $ s$ not conjugate to an extendable homeomorphism

Author: Jan van Mill
Journal: Proc. Amer. Math. Soc. 105 (1989), 250-253
MSC: Primary 54H15; Secondary 57S05, 58B05
MathSciNet review: 931739
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Consider $ s = \Pi _{i = 1}^\infty {( - 1,1)_i}$ and its compactification $ Q = \Pi _{i = 1}^\infty {\left[ { - 1,1} \right]_i}$. Anderson and Bing asked whether for every homeomorphism $ f:s \to s$ there is a homeomorphism $ \phi :s \to s$ such that $ {\phi ^{ - 1}}f\phi $ is extendable to a homeomorphism $ \overline {{\phi ^{ - 1}}f\phi :\;} Q \to Q$. The aim of this note is to construct a counterexample to this question.

References [Enhancements On Off] (What's this?)

  • [1] R. D. Anderson and R. H. Bing, A complete elementary proof that Hilbert space is homeomorphic to the countable product of lines, Bull. Amer. Math. Soc. 74 (1968), 771-792. MR 0230284 (37:5847)
  • [2] C. Bessaga and A. Pełczyński, Selected topics in infinite-dimensional topology, Polish Sci. Publ., Warsaw, 1975. MR 0478168 (57:17657)
  • [3] T. A. Chapman, Dense sigma-compact subset of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 154 (1971), 399-426. MR 0283828 (44:1058)
  • [4] S. T. Hu, The theory of retracts, Wayne State University Press, 1965. MR 0181977 (31:6202)
  • [5] K. Sakai and R. Y. T. Wong, Conjugating homeomorphisms to uniform homeomorphisms, Trans. Amer. Math. Soc. (to appear). MR 974780 (90a:58019)
  • [6] H. Toruńczyk, Absolute retracts as factors of normed linear spaces, Fund. Math. 86 (1974), 53-67. MR 0365471 (51:1723)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54H15, 57S05, 58B05

Retrieve articles in all journals with MSC: 54H15, 57S05, 58B05

Additional Information

Keywords: Hilbert cube, isotopy, conjugation, capset
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society