Oscillation of superlinear matrix differential equations

Authors:
Calvin D. Ahlbrandt, Jerry Ridenhour and Russell C. Thompson

Journal:
Proc. Amer. Math. Soc. **105** (1989), 141-148

MSC:
Primary 34C10

MathSciNet review:
946622

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The main theorems extend to matrix differential equations, Atkinson's classic theorem giving necessary and sufficient conditions for the oscillation of superlinear second-order scalar differential equations. The theorems improve recent results of Kura and of Butler and Erbe by removing a very restrictive hypothesis that solutions be symmetric.

**[1]**Shair Ahmad,*On Sturmian theory for second order systems*, Proc. Amer. Math. Soc.**87**(1983), no. 4, 661–665. MR**687636**, 10.1090/S0002-9939-1983-0687636-8**[2]**Shair Ahmad and A. C. Lazer,*An 𝑁-dimensional extension of the Sturm separation and comparison theory to a class of nonselfadjoint systems*, SIAM J. Math. Anal.**9**(1978), no. 6, 1137–1150. MR**512517**, 10.1137/0509092**[3]**Shair Ahmad and C. C. Travis,*Oscillation criteria for second-order differential systems*, Proc. Amer. Math. Soc.**71**(1978), no. 2, 247–252. MR**0486792**, 10.1090/S0002-9939-1978-0486792-2**[4]**F. V. Atkinson,*On second-order non-linear oscillations*, Pacific J. Math.**5**(1955), 643–647. MR**0072316****[5]**S. Belohorec,*Oscillatory solutions of certain non-linear differential equations of second order*, Mat.-Fyz. Casopis Sloven. Akad. Vied.**11**(1961), 250-255.**[6]**G. J. Butler and L. H. Erbe,*Oscillation theory for second order differential systems with functional commutative coefficients*, Differential and integral equations (Iowa City, Iowa, 1983/Argonne, Ill., 1984) Univ. Missouri-Rolla, Rolla, MO, 1985, pp. 15–18. MR**821763****[7]**G. J. Butler, L. H. Erbe, and A. B. Mingarelli,*Riccati techniques and variational principles in oscillation theory for linear systems*, Trans. Amer. Math. Soc.**303**(1987), no. 1, 263–282. MR**896022**, 10.1090/S0002-9947-1987-0896022-5**[8]**Ralph Byers, B. J. Harris, and Man Kam Kwong,*Weighted means and oscillation conditions for second order matrix differential equations*, J. Differential Equations**61**(1986), no. 2, 164–177. MR**823400**, 10.1016/0022-0396(86)90117-8**[9]**J. Dieudonné,*Sur un théorème de Schwerdtfeger*, Ann. Polon. Math.**29**(1974), 87–88 (French). Collection of articles dedicated to the memory of Tadeusz Ważewski. MR**0344276****[10]**Garret J. Etgen and James F. Pawlowski,*A comparison theorem and oscillation criteria for second order differential systems*, Pacific J. Math.**72**(1977), no. 1, 59–69. MR**0450675****[11]**Stuart Goff,*Hermitian function matrices which commute with their derivative*, Linear Algebra Appl.**36**(1981), 33–40. MR**604327**, 10.1016/0024-3795(81)90217-2**[12]**Philip Hartman,*Oscillation criteria for selfadjoint second-order differential systems and “principal sectional curvatures”*, J. Differential Equations**34**(1979), no. 2, 326–338. MR**550049**, 10.1016/0022-0396(79)90013-5**[13]**Stuart P. Hastings,*Boundary value problems in one differential equation with a discontinuity*, J. Differential Equations**1**(1965), 346–369. MR**0180723****[14]**Athanassios G. Kartsatos,*Recent results on oscillation of solutions of forced and perturbed nonlinear differential equations of even order*, Stability of dynamical systems, theory and applications (Proc. Regional Conf., Mississippi State Univ., Mississippi State, Miss., 1975) Dekker, New York, 1977, pp. 17–72. Lecture Notes in Pure and Appl. Math., Vol. 28. MR**0594954****[15]**A. G. Kartsatos and T. Walters,*Some oscillation results for matrix and vector differential equations with forcing term*, J. Math. Anal. Appl.**73**(1980), no. 2, 506–513. MR**564000**, 10.1016/0022-247X(80)90295-4**[16]**M. S. Keener and C. C. Travis,*Sturmian theory for a class of nonselfadjoint differential systems*, Ann. Mat. Pura Appl. (4)**123**(1980), 247–266. MR**581932**, 10.1007/BF01796547**[17]**Kurt Kreith,*Oscillation criteria for nonlinear matrix differential equations*, Proc. Amer. Math. Soc.**26**(1970), 270–272. MR**0264163**, 10.1090/S0002-9939-1970-0264163-4**[18]**Takeshi Kura,*A matrix analogue of Atkinson’s oscillation theorem*, Funkcial. Ekvac.**25**(1982), no. 2, 223–226. MR**694914****[19]**Man Kam Kwong and Hans G. Kaper,*Oscillation of two-dimensional linear second-order differential systems*, J. Differential Equations**56**(1985), no. 2, 195–205. MR**774162**, 10.1016/0022-0396(85)90104-4**[20]**E. S. Noussair and C. A. Swanson,*Oscillation criteria for differential systems*, J. Math. Anal. Appl.**36**(1971), 575–580. MR**0296417****[21]**K. Schmitt and H. L. Smith,*Positive solutions and conjugate points for systems of differential equations*, Nonlinear Anal.**2**(1978), no. 1, 93–105. MR**512658**, 10.1016/0362-546X(78)90045-7**[22]**E. C. Tomastik,*Oscillation of nonlinear matrix differential equations of second order.*, Proc. Amer. Math. Soc.**19**(1968), 1427–1431. MR**0232046**, 10.1090/S0002-9939-1968-0232046-2

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34C10

Retrieve articles in all journals with MSC: 34C10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0946622-6

Article copyright:
© Copyright 1989
American Mathematical Society