Oscillation of superlinear matrix differential equations

Authors:
Calvin D. Ahlbrandt, Jerry Ridenhour and Russell C. Thompson

Journal:
Proc. Amer. Math. Soc. **105** (1989), 141-148

MSC:
Primary 34C10

DOI:
https://doi.org/10.1090/S0002-9939-1989-0946622-6

MathSciNet review:
946622

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The main theorems extend to matrix differential equations, Atkinson's classic theorem giving necessary and sufficient conditions for the oscillation of superlinear second-order scalar differential equations. The theorems improve recent results of Kura and of Butler and Erbe by removing a very restrictive hypothesis that solutions be symmetric.

**[1]**S. Ahmad,*On Sturmian theory for second order systems*, Proc. Amer. Math. Soc.**87**(1983), 661-665. MR**687636 (84k:34042)****[2]**S. Ahmad and A. C. Lazer,*An**-dimensional extension of the Sturm separation and comparison theory to a class of nonselfadjoint systems*, SIAM J. Math. Anal.**6**(1978), 1137-1150. MR**512517 (80a:34035)****[3]**S. Ahmad and C. C. Travis,*Oscillation criteria for second-order differential systems*, Proc. Amer. Math. Soc.**71**(1978), 247-252. MR**0486792 (58:6492)****[4]**F. V. Atkinson,*On second-order non-linear oscillations*, Pacific J. Math.**5**(1955), 643-647. MR**0072316 (17:264e)****[5]**S. Belohorec,*Oscillatory solutions of certain non-linear differential equations of second order*, Mat.-Fyz. Casopis Sloven. Akad. Vied.**11**(1961), 250-255.**[6]**G. J. Butler and L. H. Erbe,*Oscillation theory for second order differential systems with functional commutative coefficients*, Differential and Integral Equations (Proc. Conf. Twelfth and Thirteenth Midwest; J. L. Henderson, ed.) Institute of Applied Mathematics, University of Missouri-Rolla, 1985, pp. 15-18. MR**821763****[7]**G. J. Butler, L. H. Erbe and A. B. Mingarelli,*Riccati techniques and variational principles in oscillation theory for linear systems*, Trans. Amer. Math. Soc.**302**(1987), 263-282. MR**896022 (88h:34023)****[8]**R. Byers, B. J. Harris and M. K. Kwong,*Weighted means and oscillation conditions for second order matrix differential equations*, J. Differential Equations**61**(1986), 164-177. MR**823400 (87f:34033)****[9]**J. Dieudonné,*Sur un Theorèm de Schwerdtfeger*, Ann. Polon. Math.**24**(1974), 87-88. MR**0344276 (49:9015)****[10]**G. T. Etgen and J. F. Pawlowski,*A comparison theorem and oscillation criteria for second order differential systems*, Pacific J. Math.**72**(1977), 59-69. MR**0450675 (56:8968)****[11]**S. Goff,*Hermitian function matrices which commute with their derivative*, Linear Algebra and Appl.**36**(1981), 33-40. MR**604327 (83j:15018)****[12]**P. Hartman,*Oscillation criteria for self-adjoint second-order differential systems and "principal sectional curvatures"*, J. Differential Equations**34**(1979), 326-338. MR**550049 (81a:34034)****[13]**S. P. Hastings,*Boundary value problems in one differential equation with a discontinuity*, J. Differential Equations**1**(1965), 346-369. MR**0180723 (31:4954)****[14]**A. G. Kartsatos,*Recent results on oscillation of solutions of forced and perturbed nonlinear differential equations of even order*, Stability of Dynamical Systems, Theory and Applications (John R. Graef, ed.) Marcel Dekker, New York, 1977, pp. 17-72. MR**0594954 (58:28853)****[15]**A. G. Kartsatos and T. Walters,*Some oscillation results for matrix and vector differential equations with forcing term*, J. Math. Anal. Appl.**73**(1980), 506-513. MR**564000 (81f:34039)****[16]**M. S. Keener and C. C. Travis,*Sturmian theory for a class of nonselfadjoint differential systems*, Ann. Mat. Pura Appl.**123**(1980), 247-266. MR**581932 (81g:34035)****[17]**K. Kreith,*Oscillation criteria for nonlinear matrix differential equations*, Proc. Amer. Math. Soc.**26**(1970), 270-272. MR**0264163 (41:8759)****[18]**T. Kura,*A matrix analogue of Atkinson's oscillation theorem*, Funkcialaj Ekvacioj**25**(1982), 223-226. MR**694914 (84i:34037)****[19]**M. K. Kwong and H. G. Kaper,*Oscillation of two-dimensional linear second order differential systems*, J. Differential Equations**56**(1985), 195-205. MR**774162 (86j:34032)****[20]**E. S. Noussair and C. A. Swanson,*Oscillation criteria for differential systems*, J. Math. Anal. Appl.**36**(1971), 575-580. MR**0296417 (45:5477)****[21]**K. Schmitt and H. L. Smith,*Positive solutions and conjugate points for systems of differential equations*, Nonlinear Anal.**2**(1978), 93-105. MR**512658 (80a:34033)****[22]**E. C. Tomastik,*Oscillation of nonlinear matrix differential equations of second order*, Proc. Amer. Math. Soc.**19**(1968), 1427-1431. MR**0232046 (38:372)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34C10

Retrieve articles in all journals with MSC: 34C10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0946622-6

Article copyright:
© Copyright 1989
American Mathematical Society