GABRIEL AND KRULL DIMENSIONS OF MODULES
OVER RINGS GRADED BY FINITE GROUPS

PIOTR GRZESZCZUK AND EDMUND R. PUCZYLOWSKI

(Communicated by Donald S. Passman)

Abstract. Let R be a ring graded by a finite group G with the identity component R_e and let M be a left R-module. It is proved that $	ext{Gdim}_R M = 	ext{Gdim}_{R_e} M$, $	ext{Kdim}_R M = 	ext{Kdim}_{R_e} M$ and $\text{Ndim}_R M = \text{Ndim}_{R_e} M$, where Gdim, Kdim and Ndim denote, respectively, Gabriel, Krull and dual Krull dimensions. The proofs are based on the use of lattice theory, a method which also gives alternative proofs of known results about normalizing extensions.

Introduction

In [10] it was proved that a module over a ring R graded by a finite group G satisfies ACC on R-submodules if and only if it satisfies the condition on R_e-submodules, where R_e is the identity component of R. The corresponding question for DCC is, like the analogous one concerning normalizing extensions (cf. [2, 5, 12]), more difficult and seems that rather no direct extension of arguments of [10] or those used for normalizing extensions could provide such a result. In this paper, following the experience of [5, 9], we approach the problem via lattice theory. It appears that on a level of lattices differences between ACC and DCC disappear and the idea of [10] can be employed. It allows us not only to handle the DCC case but also prove that none of Gabriel, Krull and dual Krull dimensions of an R-module changes when it is considered over R or R_e.

1. Preliminaries

Throughout this paper R is a ring with unity graded by a finite group G, i.e., $R = \bigoplus_{g \in G} R_g$ for additive subgroups R_g, satisfying $R_g R_h \subseteq R_{gh}$ for all $g, h \in G$. Obviously R_e is a subring of R and $1 \in R_e$. All considered modules will be left unital modules and $N \leq M$ (or $N \leq_S M$ if we need to specify the ring of scalars) means that N is a submodule of M. For proper submodules we write $N < M$.

Received by the editors March 25, 1987 and, in revised form, December 14, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 16A03, 16A55; Secondary 06C05.

©1989 American Mathematical Society
0002-9939/89 $1.00 + .25$ per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
In this paper we use some lattices and their sublattices. All those are modular with 0 and 1 (we consider only sublattices containing 0 and 1 of the original lattice). Given a module M we write $L(M)$ for the lattice of submodules of M. We denote by L^0 the dual lattice to the lattice L, i.e., the lattice having the same elements as L but carrying the reverse ordering. For all elements $a, b \in L$ with $a \leq b$, $[a, b]$ denotes the interval $\{x \in L | a \leq x \leq b\}$. If θ is a congruence on L then $\theta(a)$ denotes the congruence class determined by a. A lattice isomorphism will be denoted by \approx. All undefined terms and used results on lattices can be found in [1].

An ideal I of a lattice L is called essential if for every nonzero ideal J of L we have $I \cap J \neq 0$.

Lemma 1. Let $\{s_g | g \in G\}$, where G is a finite group, be a set of order preserving maps of a lattice L into itself such that $s_e = id$ and for every $g, h \in G$ and $x \in L$, $s_g s_h(x) \leq s_{gh}(x)$. If $f : L \to L'$ is a homomorphism of L onto a nonzero lattice L' and I is an essential ideal of L', then $f(\bigcap_{g \in G} s_g^{-1} f^{-1}(I)) \neq 0$.

Proof. For every subset X of G containing e, let $I_X = \bigcap_{g \in X} s_g^{-1} f^{-1}(I)$. Obviously $f(I_{\{e\}}) = I$, so $f(I_{\{e\}}) \neq 0$. Let X be a subset of maximal cardinality such that $e \in X$ and $f(I_X) \neq 0$. If there is $h \in G \setminus X$ then by maximality of $|X|$, $f(s_h(a)) \neq 0$ for some $a \in I_X$. Thus, since the ideal I is essential, $I \cap [0, f(s_h(a))] \neq 0$. Hence there is $b \in L$ with $b \leq s_h(a)$ and $0 \neq f(b) \in I$. Since $s_g s_h^{-1}$ preserves the order of L, for every $g \in X$, $s_g s_h^{-1}(b) \leq s_g s_h^{-1}(a)$. Now by the assumption, $s_{gh^{-1}}(b) \leq s_{gh^{-1}} s_h(a) \leq s_g(a)$. Since $a \in I_X$ and $g \in X$, $f(s_g(a)) \in I$. Consequently, $f(s_{gh^{-1}}(b)) \in I$. Thus $b \in I_{Xh^{-1} \cup \{e\}}$ and since $f(b) \neq 0$, we have $f(I_{Xh^{-1} \cup \{e\}}) \neq 0$. This contradicts maximality of $|X|$, so $X = G$ and the lemma follows.

A sublattice K of a lattice L is said to be dense in L if for each element k in $K \setminus \{1\}$, every essential ideal I of the lattice $[k, 1]$ contains an element $k_1 \in K$, $k_1 \neq k$.

The following is the key proposition of this paper. A similar proposition is true for normalizing extensions, as proved in §4.

Proposition 1. If M is an R-module and f is a homomorphism of $L(R, M)$ onto a nonzero lattice L, then $f(L(R, M))$ is a dense sublattice of $L(L^0)$. In particular, $L(R, M)(L^0(R, M))$ is a dense sublattice of $L(R, M)(L^0(R, M))$.

Proof. For every $N \leq_R M$ there is a natural isomorphism $i : L(R, M/N) \to [N, M] \subseteq L(R, M)$ such that $i(L(R, M/N)) = [N, M] \cap L(R, M)$. Now, f maps $[N, M]$ onto $[f(N), 1]$. Thus for every $k \in f(L(R, M))$ there is an R-module K and a homomorphism \overline{f} of $L(R, K)$ onto $[k, 1] \subseteq L$ such that $\overline{f}(L(R, K)) = f(L(R, M)) \cap [k, 1]$. Hence to prove that $f(L(R, M))$ is a dense sublattice of L it suffices to show that every essential ideal I of L contains a nonzero element of
Define for each \(g \in G \), \(s_g: L(R, M) \to L(R, M) \) by \(s_g(N) = RgN \).

Obviously for every \(g, h \in G \) and \(T \in L(R, M) \) we have \(s_gs_h(T) \leq s_{gh}(T) \) and \(s_e = id \). Hence by Lemma 1 there is \(N \leq R, M \) such that \(f(N) \neq 0 \) and \(f(RgN) \in I \) for all \(g \in G \). Obviously \(f(\sum_{g \in G} RgN) \) is a nonzero element of \(I \cap f(L(R, M)) \).

Going the same line as above in the dual situation but now applying the maps \(s^0_g: L^0(R, M) \to L^0(R, M) \) given by \(s^0_g(N) = R^{-1}g(N) = \{m \in M | R^{-1}gm \leq N\} \) one obtains that \(f(L^0(R, M)) \) is a dense sublattice of \(L^0 \).

2. KRULL DIMENSION

In this section we study the Krull dimension (Kdim) and the dual Krull dimension (Ndim) of modules over \(G \)-graded rings. Recall that for a module \(M \), \(\text{Kdim} M \) (\(\text{Ndim} M \)) is defined (cf. [3, 7]) by induction as follows:

\[
\text{Kdim} M = -1(\text{Ndim} M = -1) \text{ if and only if } M = 0; \\
\text{if } \alpha \text{ is an ordinal number and } \text{Kdim} M \neq \alpha (\text{Ndim} M \neq \alpha) \text{ then } \text{Kdim} M = \alpha (\text{Ndim} M = \alpha) \text{ provided for every descending (ascending) chain } M_1 \geq M_2 \geq \cdots (M_1 \leq M_2 \leq \cdots) \text{ of submodules of } M \text{ there is a } n \text{ such that } \text{Kdim} M_i/M_{i+1} < \alpha (\text{Ndim} M_{i+1}/M_i < \alpha) \text{ for } i \geq n.
\]

One of basic properties of these dimensions says that if \(N \leq M \) then \(\text{Kdim} M = \sup\{\text{Kdim} N, \text{Kdim} M/N\} \) if either side exists. The same is true for \(\text{Ndim} \).

Proposition 2. Let \(M \) be a module, \(\alpha \geq 0 \) an ordinal number and let \(\kappa_L(\eta_L) \) be the relation on \(L = L(M) \) defined by \(M_1 \kappa_L M_2 \eta_L M_2 \) if and only if \(\text{Kdim}(M_1 + M_2/M_1 \cap M_2) < \alpha(\text{Ndim}(M_1 + M_2/M_1 \cap M_2) < \alpha) \). Then

(a) \(\kappa_L \) and \(\eta_L \) are congruences on \(L \);

(b) \(\text{Kdim} M = \alpha(\text{Ndim} M = \alpha) \) if and only if the lattice \(L/\kappa_L (L/\eta_L) \) is nonzero and satisfies DCC (ACC).

Proof. We prove the proposition for \(\text{Kdim} \); the proof for \(\text{Ndim} \) is similar. In view of Lemma 1.3.8 of [8], to prove that \(\kappa_L \) is a congruence it suffices to check that if \(M_1 \leq M_2 \) are submodules of \(M \) such that \(\text{Kdim} M_2/M_1 < \alpha \) then for every submodule \(T \) of \(M \), \(\text{Kdim} M_2 + T/M_1 + T < \alpha \) and \(\text{Kdim} M_2 \cap T/M_1 \cap T < \alpha \). However these are immediate consequences of isomorphisms \(M_2 + T/M_1 + T \cong M_2/M_1 + T \cap M_2, M_2 \cap T/M_1 \cap T \cong M_2 + T \cap M_2/M_1 \) and the property of \(\text{Kdim} \) formulated before the proposition.

It is clear that if the lattice \(L/\kappa_L \), is nonzero and satisfies DCC then \(\text{Kdim} L = \alpha \). Conversely, let \(\kappa_L(M_1) \geq \kappa_L(M_2) \geq \cdots \) be a descending chain of \(L/\kappa_L \). Obviously if \(N_i = M_1 \cap \cdots \cap M_i \) for \(i = 1, 2, \ldots \), then \(N_1 \geq N_2 \geq \cdots \) and \(\kappa_L(N_i) = \kappa_L(M_i) \). Hence assuming \(\text{Kdim} M = \alpha \) we get that for some \(n \), \(\kappa_L(M_n) = \kappa_L(N_n) = \kappa_L(N_{n+1}) = \cdots \), so the lattice \(L/\kappa_L \) satisfies DCC.

To obtain the main result of this section we also need the following
Lemma 2. A dense sublattice K of a lattice L satisfies ACC if and only if the lattice L satisfies ACC.

Proof. Obviously if L satisfies ACC then the same is true for K. Suppose that K satisfies ACC and L does not. Let M be an element of K maximal with respect to the property “[m, 1] does not satisfy ACC”. Let $a_1 < a_2 < \cdots$ be a strictly ascending chain of elements of [m, 1] and let $I = \bigcup_{k \geq 1}[m, a_k]$. Of course I is an ideal of [m, 1]. By Zorn’s Lemma there is an ideal J of [m, 1] maximal with respect to the property $I \cap J = \{m\}$. Using modularity one can easily check that the ideal $I \vee J$ of [m, 1] generated by $I \cup J$ is essential in [m, 1]. Hence the density property implies that there is $m_1 \in K \cap (I \vee J)$, $m_1 > m$. Hence for some $a \in I$, $b \in J$ we have $m < m_1 \leq a \vee b$. By the definition of I, $a \leq a_i$ for some i. Thus $[m_1, 1]$ contains the chain $a_i \vee b \leq a_{i+1} \vee b \leq \cdots$.

The choice of m implies that it stabilizes. Hence for some $k \geq 0$, $a_{i+k+1} \vee b = a_{i+k} \vee b$. Now applying the modular law one obtains $a_{i+k+1} = a_{i+k+1} \wedge (a_{i+k+1} \vee b) = a_{i+k+1} \wedge (a_{i+k} \vee b) = a_{i+k} \vee (a_{i+k+1} \wedge b)$. But $I \cap J = \{m\}$, so we have $a_{i+k+1} \wedge b = m$. Hence $a_{i+k+1} = a_{i+k}$, contradiction.

Proposition 1 and Lemma 2 give immediately

Corollary 1. If M is an R-module then

(i) RM is Noetherian if and only if R_M is Noetherian;

(ii) RM is Artinian if and only if R_M is Artinian.

Now we prove the main result of this section.

Theorem 1. For every R-module M, $\text{Kdim}_R M = \text{Kdim}_{R_e} M$ ($\text{Ndim}_R M = \text{Ndim}_{R_e} M$) if either side exists.

Proof. We will concentrate here on Kdim; the proof for Ndim is parallel.

The inequality $\text{Kdim}_R M \leq \text{Kdim}_{R_e} M$ is obvious. The proof of the other inequality is by induction on $\alpha = \text{Kdim}_R M$. The case $\alpha = 0$ is done in Corollary 1(ii). Now suppose that $\alpha > 0$ and the result holds for $\beta < \alpha$. The induction assumption gives $\kappa_K = \kappa_L \cap (K \times K)$, where $L = L(R_e M), K = L(R_M), \kappa_L, \kappa_K$ are defined as in Proposition 2. Hence $K/\kappa_K \approx \{\kappa_L(N) | N \in K\} \subseteq L/\kappa_L$. Applying Proposition 1 and Lemma 2 we obtain that the lattice K/κ_K satisfies DCC if and only if the lattice L/κ_L satisfies DCC. This and Proposition 2 end the proof.

Theorem 1, and hence also Corollary 1, was proved in [4] when the grading is assumed inner.

3. Gabriel dimension

We will use the following Lanski’s [11] characterization of the Gabriel dimension, $\text{Gdim} M$, of a module M. It is given inductively starting with
Gdim \(M = 0 \) if and only if \(M = 0 \). Let \(\alpha \) be a nonlimit ordinal and suppose that \(\text{Gdim} \, M = \beta \) has been defined for \(\beta < \alpha \). Call \(A \) an \(\alpha \)-simple module if for every \(0 \neq N \leq A \), both \(\text{Gdim} \, N \neq \alpha \) and \(\text{Gdim} \, A / N < \alpha \). Then \(\text{Gdim} \, M = \alpha \) if \(\text{Gdim} \, M \neq \alpha \) and if for each \(N < M \), \(M / N \) contains a \(\beta \)-simple module for \(\beta \leq \alpha \). When \(\alpha \) is a limit ordinal, \(\text{Gdim} \, M = \alpha \) if \(\text{Gdim} \, M \neq \alpha \) and if for each \(N < M \), \(M / N \) contains a \(\beta \)-simple module for \(\beta < \alpha \).

Now we state some auxiliary facts which will be used in the proof of the main result of this section.

Proposition 3 [11].

(a) For any \(N \leq M \),
\[
\text{Gdim} \, M = \sup \{ \text{Gdim} \, N , \text{Gdim} \, M / N \}
\]
if either side exists.

(b) If \(M_i \leq M \), \(i \in I \) then \(\text{Gdim} \sum_{i \in I} M_i = \sup \{ \text{Gdim} \, M_i | i \in I \} \) if either side exists.

Proposition 4. Let \(\alpha \) be an ordinal number and let \(\gamma_L \) be the relation on \(L = L(M) \) given by \(M_1 \gamma_L M_2 \) if and only if \(\text{Gdim}(M_1 + M_2 / M_1 \cap M_2) < \alpha \). Then

(i) \(\gamma_L \) is a congruence relation;

(ii) if \(\alpha \) is nonlimit and if \(N \) is an \(\alpha \)-simple submodule of \(M \) then \(\gamma_L(N) \) is an atom of \(L / \gamma_L \);

(iii) if \(\alpha \) is nonlimit and if for some \(N \leq M \), \(\gamma_L(N) \) is an atom of \(L / \gamma_L \) then there is \(T < N \) such that \(\text{Gdim} \, T < \alpha \) and \(N / T \) is \(\alpha \)-simple.

Proof. The proof of (i) follows easily from Proposition 3(a). The condition (ii) is a direct consequence of the definition of \(\gamma_L \). Now we prove (iii). Let \(T = \sum \{ U \leq N \mid \text{Gdim} \, U < \alpha \} \). By Proposition 3(b) \(\text{Gdim} \, T < \alpha \). Now if \(T < T' \leq N \) then Proposition 3(a) and the choice of \(T' \) guarantee that \(\text{Gdim} \, T' / T \neq \alpha \). On the other hand, since \(\gamma_L(N) \) is an atom of \(L / \gamma_L \) and \(\gamma_L(T') \neq 0 \), we have \(\gamma_L(N) = \gamma_L(T') \). Hence, by the definition of \(\gamma_L \), \(\text{Gdim} \, N / T' < \alpha \).

Lemma 3. If \(K = \{ 0 , 1 \} \) is a dense sublattice of a lattice \(L \) then \(1 = a_1 \lor \cdots \lor a_n \) for some atoms \(a_1, \ldots , a_n \in L \).

Proof. By Lemma 2 the lattice \(L \) satisfies ACC, so it suffices to prove that for every \(x \in L \) there is \(y \in L \) such that \(x \land y = 0 \) and \(x \lor y = 1 \). Let \(J \) be an ideal of \(L \) maximal with respect to the property \([0 , x] \cap J = \{ 0 \} \). Then the ideal \([0 , x] \lor J \) generated by \([0 , x] \lor J \) is essential in \(L \). Hence, since \(\{ 0 , 1 \} \) is a dense sublattice of \(L \), \(1 \in [0, x] \lor J \). It means that \(1 = x \lor y \) for some \(y \in J \). Obviously \(x \land y \in [0 , x] \lor J = \{ 0 \} \).

Lemma 4. Suppose that \(\delta > 0 \) is an ordinal number and \(M \) is an \(R \)-module such that for every \(0 \neq N \leq_{R_e} M \) there exists \(0 \neq N' \leq_{R_e} N , \ R_e N ' - \beta \)-simple for some \(\beta < \delta \). Then there exists \(0 \neq T \leq_{R_e} M \) such that for every \(g \in G \), \(R_g T = 0 \) or \(R_g T \) is a \(\beta \)-simple \(R_e \)-module for some \(\beta < \delta \).

Proof. Let \(H \) be a subset of \(G \) containing \(e \), of maximal cardinality such that for some \(0 \neq X \leq_{R_e} M \) and all \(h \in H \), \(R_h X = 0 \) or \(R_h X \) is \(\beta \)-simple.
R_e-module for some $\beta < \delta$. If there is $g \in G \setminus H$ then $R_g X \neq 0$. Hence there exists $0 \neq Y \leq_{R_e} R_g X$, $r_r Y - \beta$-simple for some $\beta < \delta$. Now for every $h \in H$, $R_{hg^{-1}} X \leq R_{hg^{-1}} R_h X \leq R_h X$. Thus for every $h \in Hg^{-1} \cup \{e\}$, $R_h Y = 0$ or $R_{g^{-1}} Y$ is a β-simple R_e-module for some $\beta < \delta$. This contradiction proves that $G = H$, which gives the result.

Now we are ready to prove the main result of this section.

Theorem 2. For every R-module M, $\text{Gdim}_R M = \text{Gdim}_{R_e} M$ if either side exists.

Proof. We will prove by induction on α that if one side is equal to α then so is the other. It is clear for $\alpha = 0$. Suppose now that $\alpha > 0$ and the result holds for $\beta < \alpha$. Observe that this assumption says in particular that if γ_L and γ_K are the congruences defined in Proposition 4 on $L = L(R, M)$ and $K = L(R, M)$ respectively then $\gamma_K = \gamma_L \cap (K \times K)$. Thus $K/\gamma_K \cong \{\gamma_L(N) \mid N \in K\} \subseteq L/\gamma_L$ and by Proposition 1 K/γ_K can be treated as a dense sublattice of L/γ_L.

Suppose that $\text{Gdim}_R M = \alpha$. Since $\gamma_K = \gamma_L \cap (K \times K)$, $\text{Gdim}_{R_e} M \neq 0$. Thus we have to show that for every $N <_{R_e} M$, M/N contains a nonzero β-simple R_e-module, where $\beta \leq \alpha$ if α is nonlimit and $\beta < \alpha$ otherwise. Let T be the largest R-submodule of M which is contained in N. Passing to the module M/T we can assume that $T = 0$. Since $\text{Gdim}_R M = \alpha$ there is $0 \neq T' \leq_{R_e} M$, $R_{T'} - \beta$-simple for some $\beta \leq \alpha$ if α is nonlimit and $\beta < \alpha$ otherwise. If $\beta < \alpha$ then by the induction assumption $\text{Gdim}_{R_e} (T' / T' \cap N) < \alpha$, so $0 < \text{Gdim}_{R_e} (T' + N/N) < \alpha$ and we are done. If $\beta = \alpha$ then by Proposition 4(ii) $\gamma_L(T')$ is an atom of the sublattice $\{\gamma_L(N) \mid N \in K\}$ of L/γ_L. Thus by Proposition 1 and Lemma 3 there are atoms $\gamma_L(N_1), \ldots, \gamma_L(N_k)$ of L/γ_L such that $\gamma_L(T') = \gamma_L(N_1) \vee \cdots \vee \gamma_L(N_k)$. It follows that the length of $[\gamma_L(N_1), \gamma_L(T' + N)]$ is finite. Hence by Proposition 4(iii) there is $\gamma_K(T')$ such that $N < \gamma_K(T') <_{R_e} T' + N$ and $R_e(\gamma_K(T'))$ is β-simple for some $\beta \leq \alpha$, as required.

Suppose that $\text{Gdim}_{R_e} M = \alpha$. By the induction assumption $\text{Gdim}_R M \neq \alpha$. Thus we have to show that for every $N <_{R_e} M$, M/N contains a β-simple R-submodule with $\beta \leq \alpha$ if α is nonlimit and $\beta < \alpha$ otherwise. We can obviously assume that $N = 0$. Observe that M satisfies the assumption of Lemma 4 with $\delta = \alpha$ in the limit case and $\delta = \alpha + 1$ otherwise. Hence there is $0 \neq X \leq_{R_e} M$ such that for every $g \in G$, $R_g X = 0$ or $R_g X$ is β-simple R_e-module for some $\beta \leq \alpha$ if α is nonlimit and $\beta < \alpha$ otherwise. Now $T = \bigoplus_{g \in G} R_g X$ is a nonzero R-submodule of M. If for all $g \in G$, $\text{Gdim}_{R_e}(R_g X) < \alpha$ then the induction assumption gives $\text{Gdim}_R T < \alpha$ and we are done. If for some $g \in G$, $\text{Gdim}_{R_e}(R_g X) = \alpha$ then by Proposition 4(ii) $\gamma_L(T)$ is a join of atoms of L/γ_L. Hence also the lattice K/γ_K contains an atom $\gamma_K(T') \leq \gamma_K(T)$. Thus by Proposition 4(iii) there exists $T'' \leq_{R_e} T$ such that $\text{Gdim}_R T'' < \alpha$ and $R(T'/T'')$ is α-simple. If $T'' \neq 0$ then it contains a
nonzero β-simple R-module for some $\beta < \alpha$. If $T'' = 0$ then T' is α-simple and we are done. This ends the proof.

4. Remarks

1. The methods of this paper can be almost directly applied to obtain analogous results for some other than $R_\tau \subseteq R$ ring extensions of “finite type”. Here we comment how they could be used to obtain some known results on normalizing extensions.

Recall that an extension $R \subseteq S$ of rings with the same 1 is finite normalizing if for some $s_1 = 1$, $s_2, \ldots, s_n \in S$, $S = Rs_1 + \cdots + Rs_n$ and $Rs_j = s_j R$ for $1 \leq j \leq n$.

It is known [2, 6, 12, 13], that if $R \subseteq S$ is a finite normalizing extension, M is an S-module then $\text{Kdim}_S M = \text{Kdim}_R M$ and $\text{Gdim}_S M = \text{Gdim}_R M$. It is clear that proving the above result by the method of this paper one will have some problems with Proposition 1 and Lemma 4 only. In the present situation instead of Proposition 1 one can apply the following

Proposition 1'. Let M be an S-module and $\varphi_i, \varphi_i^0 : L(RM) \to L(RM)$ be given by $\varphi_i(N) = s_i N$ and $\varphi_i^0(N) = \{m \in M \mid s_i m \in N\}$. If f is a homomorphism of $L(RM)$ onto a nonzero lattice L such that $f(X) = f(Y)$ implies $f(\varphi_i(X)) = f(\varphi_i(Y))$ for $1 \leq i \leq n$, then $f(L(SM))$ is a dense sublattice of $L(L^0)$.

Proof (Sketch). Similarly as in the proof of Proposition 1 to get that $f(L(RM))$ is a dense sublattice of L it suffices to show that every essential ideal I of L contains a nonzero element of $f(L(SM))$. The assumption on f and φ_i implies that for every $1 \leq i \leq n$, $g_i : L \to L$ given by $g_i(x) = f(\varphi_i(X))$ where $x = f(X)$, is a well-defined map. One easily checks that $g_i(0) = 0$, for every $x, y \in L$, $g_i(x \lor y) = g_i(x) \lor g_i(y)$ and if $x \leq y$ then $g_i([x, y]) = [g_i(x), g_i(y)]$. These imply that $g_i^{-1}(I), 1 \leq i \leq n$, are essential ideals of L. Hence $\bigcap_{i=1}^{n} g_i^{-1}(I) \neq 0$. Now if $0 \neq x \in \bigcap_{i=1}^{n} g_i^{-1}(I)$ then, since $g_i = \text{id}$, $y = \bigvee_{i=1}^{n} g_i(x) \neq 0$. Clearly $y \in I \cap f(L(SM))$.

Applying φ_i^0 instead of φ_i one gets the dual result.

Instead of Lemma 4 one can apply the following.

Lemma 4'. Suppose that $\delta > 0$ is an ordinal number, M is an S-module and N is a δ-simple R-submodule of M. Then for every $1 \leq i \leq n$, $s_i N$ is δ-simple R-module or $\text{Gdim}_R s_i N < \delta$.

The proof follows from the fact that $L(Rs_i N) \approx L(R(N/K))$, where $K = \{x \in N \mid s_i x = 0\}$.

2. In [13] there was introduced the notion of the dual Gabriel dimension, $\text{Gcdim}_R M$, of a module M. The same proof as for Gdim gives the inequality $\text{Gcdim}_R M \geq \text{Gcdim}_R M$ (if $\text{Gcdim}_R M$ exists !) but we have not been able to obtain the other inequality.
REFERENCES

Institute of Mathematics, University of Warsaw, Bialystok Division, Akademicka 2, 15–267 Bialystok, Poland

Institute of Mathematics, University of Warsaw, Pl. 00-901 Warsaw, Poland